Name | Prof. Dr. Mark Tibbitt |
Name variants | Mark W. Tibbitt Mark Tibbitt |
Field | Macromolecular Engineering |
Address | Makromolekulares Engineering ETH Zürich, ML H 21 Sonneggstrasse 3 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 25 16 |
mtibbitt@ethz.ch | |
Department | Mechanical and Process Engineering |
Relationship | Associate Professor |
Number | Title | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0123-00L | Experimental Methods for Engineers Does not take place this semester. | 4 credits | 2V + 2U | D. J. Norris, F. Coletti, M. Lukatskaya, A. Manera, O. Supponen, M. Tibbitt | |||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course presents an overview of measurement tasks in engineering environments. Different concepts for the acquisition and processing of typical measurement quantities are introduced. Following an initial in-class introduction, laboratory exercises from different application areas (especially in thermofluidics, energy, and process engineering) are attended by students in small groups. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to various aspects of measurement techniques, with particular emphasis on thermo-fluidic, energy, and process-engineering applications. Understanding of various sensing technologies and analysis procedures. Exposure to typical experiments, diagnostics hardware, data acquisition, and processing. Study of applications in the laboratory. Fundamentals of scientific documentation and reporting. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Content | In-class introduction to representative measurement techniques in the research areas of the participating institutes (fluid dynamics, energy technology, and process engineering). Student participation in ~6 laboratory experiments (study groups of ~3 students, dependent on the number of course participants and available experiments). Lab reports for all attended experiments have to be submitted by the study groups. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Presentations, handouts, and instructions are provided for each experiment. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Holman, J.P. "Experimental Methods for Engineers," McGraw-Hill 2001, ISBN 0-07-366055-8 Morris, A.S. & Langari, R. "Measurement and Instrumentation," Elsevier 2011, ISBN 0-12-381960-4 Eckelmann, H. "Einführung in die Strömungsmesstechnik," Teubner 1997, ISBN 3-519-02379-2 | ||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic understanding in the following areas: - fluid mechanics, thermodynamics, heat and mass transfer - electrical engineering / electronics - numerical data analysis and processing (e.g. using MATLAB) | ||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||
151-0917-00L | Mass Transfer | 4 credits | 2V + 2U | M. Tibbitt, V. Mavrantzas, C.‑J. Shih | |||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore. the application of these principles to important engineering problems is demonstrated. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students are exposed to the fundamentals of transport phenomena with an emphasis on mass transfer models, using Fick’s fundamental law for diffusion or the concept of mass transfer coefficients both for dilute and concentrated solutions. The central learning objectives are that by the end of the course, students should be able to: • calculate diffusion coefficients in various systems • apply mass transfer coefficient models involving solid/solid or fluid/solid interfaces • set up differential mass balances, and • directly implement generalized mass balance equations • inform chemical reaction mechanisms using mass transfer models With these aims, students will be able to address mass transport in a variety of engineering problems typically encountered in unit operations (such as evaporation, distillation, absorption), or in processes involving dissolution of particles, dispersion of pollutants, growth of microorganisms, pharmacokinetics and diffusion coupled with chemical reaction, under steady-state or transient conditions. Through this knowledge the students are capable of designing chemical processes involving mass transfer sequentially with other phenomena such as stirring or agitation, reaction using a porous catalyst, and solute–solvent or solute–boundary interactions. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Cussler, E.L.: "Diffusion", 3nd edition, Cambridge University Press, 2009. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Students attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||
151-0957-00L | Practica in Process Engineering I ![]() | 2 credits | 2P | S. A. Meyer, D. J. Norris, M. Tibbitt | |||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Practical training at pilot facilities for fundamental processing steps, typical laboratory and pilot facility experiments. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Getting acquainted with unit operations, measuring tools and data processing | ||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 4 modules in total (3 from Prof. Norris, 1 from Prof. Mark Tibbitt) Details and dates will be communicated at the beginning of the semester. Residence Time Distribution Tibbitt Perovskite Nanocrystals - Synthesis and Characterization Norris ICP Elemental Analysis Norris Scanning Electron Microscope Imaging (SEM) Norris | ||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Scripts of the specific practice will be available shortly before the modules. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Own scripts |