Timothy John Patey: Catalogue data in Autumn Semester 2021 |
Name | Dr. Timothy John Patey |
Address | HItachi Zosen Inova Hardturmstrasse 127 8005 Zürich SWITZERLAND |
Department | Information Technology and Electrical Engineering |
Relationship | Lecturer |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
227-0665-00L | Battery Integration Engineering Priority given to Electrical and Mechanical Engineering students Students are required to have attended one of the following courses: - 227-0664-00L Technology and Policy of Electrical Energy Storage - 529-0440-00L Physical Electrochemistry and Electrocatalysis - 529-0191-01L Renewable Energy Technologies II, Energy Storage and Conversion - 529-0659-00L Electrochemistry (Exception for PhD students). | 3 credits | 2V + 1U | T. J. Patey | |
Abstract | Batteries enable sustainable mobility, renewable power integration, various power grid services, and residential energy storage. Linked with low cost PV, Li-ion batteries are positioned to shift the 19th-century centralized power grid into a 21st-century distributed one. As with battery integration, this course combines understanding of electrochemistry, heat & mass transfer, device engineering. | ||||
Learning objective | The learning objectives are: - Apply critical thinking on advancements in battery integration engineering. Assessment reflects this objective and is based on review of a scientific paper, with mark weighting of 10 / 25 / 65 for a proposal / oral presentation / final report, respectively. - Design battery system concepts for various applications in the modern power system and sustainable mobility, with a deep focus on replacing diesel buses with electric buses combined with charging infrastructure. - Critically assess progresses in battery integration engineering: from material science of novel battery technologies to battery system design. - Apply "lessons learned" from the history of batteries to assess progress in battery technology. - Apply experimental and physical concepts to develop battery models in order to predict lifetime. | ||||
Content | - Battery systems for the modern power grid and sustainable mobility. - Battery lifetime modeling by aging, thermal, and electric sub-models. - Electrical architecture of battery energy storage systems. - History and review of electrochemistry & batteries, and metrics to assess future developments in electrochemical energy stroage. - Sustainability and life cycle analysis of battery system innovations. | ||||
Prerequisites / Notice | Limited to 30 Students. Priority given to Electrical and Mechanical Engineering students. Mandatory - background knowledge in batteries & electrochemistry acquired in one of the following courses: - 227-0664-00L Technology and Policy of Electrical Energy Storage - 529-0440-00L Physical Electrochemistry and Electrocatalysis - 529-0191-01L Renewable Energy Technologies II, Energy Storage and Conversion - 529-0659-00L Electrochemistry Exception given for PhD students |