Marina Krstic Marinkovic: Catalogue data in Autumn Semester 2024 |
Name | Prof. Dr. Marina Krstic Marinkovic |
Name variants | Marina Marinkovic Marina Krstic Marinkovic |
Field | Computational Physics |
Address | Institut für Theoretische Physik ETH Zürich, HIT G 33.2 Wolfgang-Pauli-Str. 27 8093 Zürich SWITZERLAND |
Telephone | +41 44 633 82 33 |
marinama@ethz.ch | |
Department | Physics |
Relationship | Assistant Professor (Tenure Track) |
Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
402-0205-00L | Quantum Mechanics I Physics BSc students with programme regulations 2016 need to register for "402-0205-10L Quantenmechanik I" A repetition week is offered in the middle of the semester. | 8 credits | 3V + 2U | M. Krstic Marinkovic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | General structure of quantum theory: Hilbert spaces, states and observables, equations of motion, Heisenberg uncertainty relation, symmetries, angular momentum addition, EPR paradox, Schrödinger and Heisenberg picture. Applications: simple potentials in wave mechanics, scattering and resonance, harmonic oscillator, hydrogen atom, and perturbation theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, angular momentum, perturbation theory) and generic examples and applications (bound states, tunneling, hydrogen atom, harmonic oscillator). Ability to solve simple problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The beginnings of quantum theory with Planck, Einstein and Bohr; Wave mechanics; Simple examples; The formalism of quantum mechanics (states and observables, Hilbert spaces and operators, the measurement process); Heisenberg uncertainty relation; Harmonic oscillator; Symmetries (in particular rotations); Hydrogen atom; Angular momentum addition; Quantum mechanics and classical physics (EPR paradoxon and Bell's inequality); Perturbation theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | G. Baym, Lectures on Quantum Mechanics E. Merzbacher, Quantum Mechanics L.I. Schiff, Quantum Mechanics R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals J.J. Sakurai: Modern Quantum Mechanics A. Messiah: Quantum Mechanics I S. Weinberg: Lectures on Quantum Mechanics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0205-10L | Quantum Mechanics I Only for Physics BSc, Programme Regulations 2016. Last time offered in HS24. A repetition week is offered in the middle of the semester. | 10 credits | 3V + 2U | M. Krstic Marinkovic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | General structure of quantum theory: Hilbert spaces, states and observables, equations of motion, Heisenberg uncertainty relation, symmetries, angular momentum addition, EPR paradox, Schrödinger and Heisenberg picture. Applications: simple potentials in wave mechanics, scattering and resonance, harmonic oscillator, hydrogen atom, and perturbation theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to single-particle quantum mechanics. Familiarity with basic ideas and concepts (quantisation, operator formalism, symmetries, angular momentum, perturbation theory) and generic examples and applications (bound states, tunneling, hydrogen atom, harmonic oscillator). Ability to solve simple problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The beginnings of quantum theory with Planck, Einstein and Bohr; Wave mechanics; Simple examples; The formalism of quantum mechanics (states and observables, Hilbert spaces and operators, the measurement process); Heisenberg uncertainty relation; Harmonic oscillator; Symmetries (in particular rotations); Hydrogen atom; Angular momentum addition; Quantum mechanics and classical physics (EPR paradoxon and Bell's inequality); Perturbation theory. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | G. Baym, Lectures on Quantum Mechanics E. Merzbacher, Quantum Mechanics L.I. Schiff, Quantum Mechanics R. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals J.J. Sakurai: Modern Quantum Mechanics A. Messiah: Quantum Mechanics I S. Weinberg: Lectures on Quantum Mechanics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0836-16L | Quantum Simulations of Gauge Theories Does not take place this semester. | 6 credits | 2V + 1U | M. Krstic Marinkovic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Divided into three parts, the course introduces various aspects of lattice quantum field theory (QFT), gauge symmetries, quantum simulators, and implementation schemes. Other than highlighting the strengths and weaknesses of the lattice formulation of QFTs suitable for Monte Carlo simulations, the course discusses practical realization of quantum simulators for gauge theories. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | After acquiring the foundations on lattice formulation of gauge theories, and challenges of conventional Monte Carlo simulation approaches, the students will learn about different strategies for quantum simulation of gauge theories and their implementation on digital and analog quantum devices. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Background and Motivation 1.1 From Quantum Field Theories to Lattice field theories; 1.2 Lattice Gauge Theories - Lagrangian formulation, gauge symmetries, observables; 1.3 Monte Carlo simulations, sign problems, and complex actions. 2. Road-map for Quantum Simulation of Gauge Theories 2.1 Hamiltonian formulation, Wilson’s formulation, and the infinite Hilbert spaces; 2.2 Finite Hilbert spaces: Z(N) gauge theories. Dualizing the Ising model and relation with the toric code; 2.3 Finite Hilbert spaces: Quantum link models for Abelian gauge theories; 2.4 Finite Hilbert spaces: Quantum link models for non-Abelian gauge theories; 2.5 Exploring the physics of gauge theories - phases, dynamics, and thermalization; 2.6 Exploring methods for gauge theories - exact diagonalization, tensor networks, Monte Carlo. 3. Quantum Simulation Approaches and Platforms 3.1 Digital vs. analog quantum simulations; 3.2 Proposals for simulations of gauge theories, realization, and perspectives. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Quantum chromodynamics on the lattice (Christof Gattringer, Christian B. Lang. Series Title: Lecture Notes in Physics. DOI: https://doi.org/10.1007/978-3-642-01850-3) From Quantum Link Models to D-Theory: A Resource Efficient Framework for the Quantum Simulation and Computation of Gauge Theories, U. J. Wiese |