Rachael Garrett: Katalogdaten im Herbstsemester 2021 |
Name | Frau Dr. Rachael Garrett |
URL | https://epl.ethz.ch/ |
Departement | Geistes-, Sozial- und Staatswissenschaften |
Beziehung | Assistenzprofessorin (Tenure Track) |
Nummer | Titel | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
701-0658-00L | Seminar für Bachelor-Studierende: Mensch-Umwelt Systeme | 3 KP | 2S | A. Müller, D. N. Bresch, R. Garrett, M. Siegrist | |||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Analyse und Präsentation von wissenschaftlichen Fachartikeln der beteiligten Lehrstühle aus dem Bereich Mensch-Umwelt-Systeme. | ||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Studierenden erlernen, aktuelle Artikel aus dem Bereich Mensch-Umwelt Systeme zu lesen, zu verstehen, zusammenfassend zu präsentieren, und kritisch zu würdigen. Die Studierenden lernen auch eine Reihe innovativer Ansätze für solche Präsentationen kennen. | ||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Die Forschung im Bereich Mensch-Umwelt Systeme ist durch eine grosse Themen- und Methodenvielfalt gekennzeichnet. Dies kommt unter anderem in den wissenschaftlichen Beiträgen der an der Veranstaltung beteiligten Professuren zum Ausdruck. Die Studierenden wählen eine wissenschaftliche Publikation aus und referieren darüber im Seminar. Durch Teilnahme an der Diskussion der präsentierten Artikel wird zudem das Stellen und Beantworten von Fragen zur Präsentation geübt. Zudem müssen die Studierenden jeweils einmal eine Diskussion moderieren. Zu Beginn des Semesters (3 Doppellektionen) werden verschiedene Präsentationstechniken und innovative Ansätze für Präsentationen vorgestellt und diskutiert. | ||||||||||||||||||||||||||||||||||||||||||||
Skript | Wird im Seminar abgegeben. | ||||||||||||||||||||||||||||||||||||||||||||
Literatur | Wird im Seminar abgegeben. | ||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | keine | ||||||||||||||||||||||||||||||||||||||||||||
701-1565-00L | Quantitative Policy Analysis and Modeling | 6 KP | 4G | A. Patt, R. Garrett, B. Pickering, T. Tröndle | |||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The lectures will introduce students to the principles of quantitative policy analysis, namely the methods to predict and evaluate the social, economic, and environmental effects of alternative strategies to achieve public objectives. A series of individual assignments, and one group project, will give students an opportunity for students to apply those methods to a set of case studies | ||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The objectives of this course are to develop the following key skills necessary for policy analysts: - Identifying the critical quantitative factors that are of importance to policy makers in a range of decision-making situations. - Developing conceptual models of the types of processes and relationships governing these quantitative factors, including stock-flow dynamics, feedback loops, optimization, sources and effects of uncertainty, and agent coordination problems. - Develop and program numerical models to simulate the processes and relationships, in order to identify policy problems and the effects of policy interventions. - Communicate the findings from these simulations and associated analysis in a manner that makes transparent their theoretical foundation, the level and sources of uncertainty, and ultimately their applicability to the policy problem. The course will proceed through a series of policy analysis and modeling exercises, involving real-world or hypothetical problems. The specific examples around which work will be done will concern the environment, energy, health, and natural hazards management. | ||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| ||||||||||||||||||||||||||||||||||||||||||||
876-0201-00L | Technology and Policy Analysis Only for CAS in Technology and Public Policy: Impact Analysis | 8 KP | 5G | T. Schmidt, E. Ash, R. Garrett, I. Günther, L. Kaack, A. Rom, B. Steffen | |||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Technologies substantially affect the way we live and how our societies function. Technological change, i.e. the innovation and diffusion of new technologies, is a fundamental driver of economic growth but can also have detrimental side effects. This module introduces methods to assess technology-related policy alternatives and to analyse how policies affect technological changes and society. | ||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Introduction: Participants understand (1) what ex ante and ex post policy impact analysis is, (2) in what forms and with what methods they can be undertaken, (3) why they are important for evidence-based policy-making. Analysis of Policy and Technology Options: Participants understand (1) how to perform policy analyses related to technology; (2) a policy problem and the rationale for policy intervention; (3) how to select appropriate impact categories and methods to address a policy problem through policy analysis; (4) how to assess policy alternatives, using various ex ante policy analysis methods; (5) and how to communicate the results of the analysis. Evaluation of Policy Outcomes: Participants understand (1) when and why policy outcomes can be evaluated based on observational or experimental methods, (2) basic methods for evaluating policy outcomes (e.g. causal inference methods and field experiments), (3) how to apply concepts and methods of policy outcome evaluation to specific cases of interest. Big Data Approaches to Policy Analysis: Participants understand (1) why "big data" techniques for making policy-relevant assessments and predictions are useful, and under what conditions, (2) key techniques in this area, such as procuring big datasets; pre-processing and dimension reduction of massive datasets for tractable computation; machine learning for predicting outcomes; interpreting machine learning model predictions to understand what is going on inside the black box; data visualization including interactive web apps. | ||||||||||||||||||||||||||||||||||||||||||||
Literatur | Course materials can be found on Moodle. |