Robert Katzschmann: Katalogdaten im Frühjahrssemester 2023 |
Name | Herr Prof. Dr. Robert Katzschmann |
Namensvarianten | Robert K. Katzschmann R. Katzschmann Robert K Katzschmann Robert Katzschmann Robert Kevin Katzschmann |
Lehrgebiet | Robotik |
Adresse | Professur für Robotik ETH Zürich, CLA F 1.2 Tannenstrasse 3 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 22 40 |
rkk@ethz.ch | |
URL | http://srl.ethz.ch |
Departement | Maschinenbau und Verfahrenstechnik |
Beziehung | Assistenzprofessor (Tenure Track) |
Nummer | Titel | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0073-21L | SURF‐eDNA Voraussetzung: Besuch der Lerneinheit 151-0073-20L SURF‐eDNA im HS22. | 14 KP | 15A | R. Katzschmann | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Im Team ein Produkt von A-Z entwickeln und realisieren! Anwenden und Vertiefen des bestehenden Wissens, Arbeiten in Teams, Selbständigkeit, Problemstrukturierung, Lösungsfindung in unscharfen Problemstellungen, Systembeschreibung und -simulation, Präsentation und Dokumentation, Realisationsfähigkeit, Werkstatt- und Industriekontakte, Anwendung modernster Ingenieur-Werkzeuge (Matlab, Simulink usw). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die vielfältigen Lernziele dieses Fokus-Projektes sind: - Synthetisieren und Vertiefen des theoretischen Wissens aus den Grundlagenfächern des 1.-4. Semesters - Teamorganisation, Arbeiten in Teams, Steigerung der sozialen Kompetenz - Selbständigkeit, Initiative, selbständiges Lernen neuer Themeninhalte - Problemstrukturierung, Lösungsfindung in unscharfen Problemstellungen, Suchen von Informationen - Systembeschreibung und -simulation - Präsentationstechnik, Dokumentationserstellung - Entscheidungsfähigkeit, Realisationsfähigkeit - Werkstatt- und Industriekontakte - Erweiterung und Vertiefung von Sachwissen - Beherrschung modernster Ingenieur-Werkzeuge (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0073-51L | MetaSuit Voraussetzung: Besuch der Lerneinheit 151-0073-50L MetaSuit im HS22. | 14 KP | 15A | R. Katzschmann | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Im Team ein Produkt von A-Z entwickeln und realisieren! Anwenden und Vertiefen des bestehenden Wissens, Arbeiten in Teams, Selbständigkeit, Problemstrukturierung, Lösungsfindung in unscharfen Problemstellungen, Systembeschreibung und -simulation, Präsentation und Dokumentation, Realisationsfähigkeit, Werkstatt- und Industriekontakte, Anwendung modernster Ingenieur-Werkzeuge (Matlab, Simulink usw). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die vielfältigen Lernziele dieses Fokus-Projektes sind: - Synthetisieren und Vertiefen des theoretischen Wissens aus den Grundlagenfächern des 1.-4. Semesters - Teamorganisation, Arbeiten in Teams, Steigerung der sozialen Kompetenz - Selbständigkeit, Initiative, selbständiges Lernen neuer Themeninhalte - Problemstrukturierung, Lösungsfindung in unscharfen Problemstellungen, Suchen von Informationen - Systembeschreibung und -simulation - Präsentationstechnik, Dokumentationserstellung - Entscheidungsfähigkeit, Realisationsfähigkeit - Werkstatt- und Industriekontakte - Erweiterung und Vertiefung von Sachwissen - Beherrschung modernster Ingenieur-Werkzeuge (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Mehrere Teams mit je 4-8 Studierenden der ETH, ergänzt durch Studierende anderer Hochschulen und Universitäten, realisieren während zwei Semestern ein Produkt. Ausgehend von einer marktorientierten Problemstellung werden alle Prozesse der Produktentwicklung realitätsnah durchschritten: Marketing, Konzeption, Design, Engineering, Simulation, Entwurf und Produktion. Die Teams werden durch erfahrene Coachs betreut. Ein einmaliges Lernerlebnis wird ermöglicht. Innovationsideen aus der Industrie (z.T. auch aus Forschungsprojekten) werden gesammelt und durch den Lenkungsausschuss evaluiert. Aus ausgewählten Problemstellungen werden Aufgabenstellungen für die Teams formuliert. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0636-00L | Soft and Biohybrid Robotics | 4 KP | 3G | R. Katzschmann | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Soft and biohybrid robotics are emerging fields taking inspiration from nature to create robots that are inherently safer to interact with. You learn how to create structures, actuators, sensors, models, controllers, and machine learning architectures exploiting the deformable nature of soft robots. You also learn how to apply soft robotic principles to challenges of your research domain. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Learning Objective 1: Solve a robotics challenge with a soft robotic design Step 1: Formulate suitable functional requirements for the challenge Step 2: Select soft robotic actuator material Step 3: Design and fabrication approach suitable for the challenge Step 4: Basic controller for robotic functionality Learning Objective 2: Formulate modeling, control, and learning frameworks for highly articulated robots in real-life scenarios Step 1: Formulate the dynamic skills needed for the real-life scenario Step 2: Pick + combine suitable multiphysics modeling, control + learning techniques for this scenario Step 3: Evaluate the modeling/control approach for a real-life scenario Step 4: Modify and enhance the modeling/control approach and repeat the evaluation Step 5: Choose a learning approach for complex robotic skills Learning Objective 3: Apply the principles of mechanical impedance and embodied intelligence to soft robotic challenges in various domains Step 1: Identify the moving aspects of the problem Step 2: Choose and design the passive and actively-controlled degrees of freedom Step 3: Pick the actuation material based on suitability to your challenge Step 4: Design in detail multiple combinations of body and brain Step 5: Simulate, build, test, fail, and repeat this often and quickly until the soft robot works for simple settings Step 6: Upgrade and validate the robot for a suitable performance under real-world conditions Learning Objective 4: Rethink robotic approaches by moving towards designs made of living materials Step 1: Identify what problems could be easier to solve with a complex living material Step 2: Scout for available works that have potentially tackled the problem with a living material Step 3: Formulate a hypothesis for your new approach with a living material Step 4: Design a minimum viable prototype (MVP) that suitably highlights your new approach | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Students will learn about the latest research advances in material technologies, fabrication, modeling, and machine learning to design, simulate, build, and control soft and biohybrid robots. Part 1: Functional and intelligent materials for use in soft and biohybrid robotic applications Part 2: Design and design morphologies of soft robotic actuators and sensors Part 3: Fabrication techniques including 3D printing, casting, roll-to-roll, tissue engineering Part 4: Biohybrid robotics including microrobots and macrorobots; tissue engineering Part 5: Mechanical modeling including minimal parameter models, finite-element models, and ML-based models Part 6: Closed-loop controllers of soft robots that exploit the robot's impedance and dynamics for locomotion and manipulation tasks Part 7: Machine Learning approaches to soft robotics, for design synthesis, modeling, and control Regular assignments throughout the semester will teach the participants to implement the skills and knowledge learned during the class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | All class materials including slides, recordings, assignments, pre-reads, and tutorials can be found on the Moodle page of the class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | 1) Yasa et al. "An Overview of Soft Robotics." Annu. Rev. Control Robot. Auton. Syst. (2023). 6:1–29. 2) Polygerinos et al. "Soft robotics: Review of fluid‐driven intrinsically soft devices; manufacturing, sensing, control, and applications in human‐robot interaction." Advanced Engineering Materials 19.12 (2017): 1700016. 3) Cianchetti, et al. "Biomedical applications of soft robotics." Nature Reviews Materials 3.6 (2018): 143-153. 4) Ricotti et al. "Biohybrid actuators for robotics: A review of devices actuated by living cells." Science Robotics 2.12 (2017). 5) Sun et al. "Biohybrid robotics with living cell actuation." Chemical Society Reviews 49.12 (2020): 4043-4069. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | - Prerequesites are dynamics, controls, and intro to robotics. - Only for students at master or PhD level. - Due to the limited places, the priority goes first to students from the Robotics, Systems and Control Master and second to the other study programs where the course is offered. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0638-00L | MaP Distinguished Lecture Series on Engineering with Living Materials This course is primarily designed for MSc and doctoral students. Guests are welcome. Former title: MaP Distinguished Lecture Series on Soft Robotics | 1 KP | 2S | R. Katzschmann, M. Filippi, X.‑H. Qin, Z. Zhang | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course is an interdisciplinary colloquium on the engineering of biohybrid systems and robotics. Internationally renowned speakers from academia and industry give lectures about their cutting-edge research, which highlights the state-of-the-art and frontiers in the field of engineering with living materials and biohybrids. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Participants become acquainted with the state-of-the-art and frontiers in biohybrid systems and robotics, which is a topic of global and future relevance from the field of materials and process engineering. The self-study of relevant literature and active participation in discussions following presentations by internationally renowned speakers stimulate critical thinking and allow participants to deliberately discuss challenges and opportunities with leading academics and industrial experts and to exchange ideas within an interdisciplinary community. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course is a colloquium involving a selected mix of internationally renowned speakers from academia and industry who present their cutting-edge research in the field of engineered systems using living materials. In particular, the course will cover fundamentals of bioengineering at a multicellular level (biofabrication), as well as examples of manufacturing and application of living cells to engineered systems for medical applications and beyond. Speakers will show how to combine living cells with non-living, synthetic materials to realize bio-hybrid systems to be applied to many fields of human life, ranging from biomedicine to robotics, biosensing, ecology, and architecture. It will be shown how bio-hybrid technologies and cutting-edge engineering techniques can support cell proliferation and even enhance their cell functions. The course will cover materials and approaches for the biofabrication of living tissue, seen as a biomedical model for pathophysiological discovery research, or as transplantable grafts for tissue regeneration. Speakers will illustrate how living species can contribute to ecological approaches in town planning (such as CO2 sequestration), sensing and processor technologies enabled by connective and signaling abilities of cells, and motile systems actuated by contractile cells (bio-hybrid robots). The main learning objective is to learn about: materials and techniques to build intelligent biological systems for future, sustainable societies; mechanisms of cell and tissue programmability; and applications in bio-robotics, communication, sensing technologies, and medical engineering. The self-study of relevant pre-read literature provided in advance of each lecture serves as a basis for active participation in the critical discussions following each presentation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Selected scientific pre-read literature (around two articles per lecture) relevant for and discussed during the lectures is posted in advance on the course web page. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | This course is taught by a selection of internationally renowned speakers from academia and industry working in the field of bio-hybrid systems and robotics. This lecture series is focusing on the recent trends in engineering with living materials. Participants should have a background in tissue engineering, material science, and/or robotics. To obtain credits, students need to: (i) attend 80% of all lectures; (ii) submit a one-page abstract of 3 different lectures. The performance will be assessed with a "Pass/Fail" format. On-site attendance to the lectures is preferred to foster in-person contacts. However, for lectures given by online speakers, a Zoom link to attend remotely will be provided on Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
327-2224-00L | MaP Distinguished Lecture Series on Additive Manufacturing Findet dieses Semester nicht statt. This course is primarily designed for MSc and doctoral students. Guests are welcome. | 1 KP | 2S | R. Katzschmann, L. De Lorenzis, Noch nicht bekannt | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course is an interdisciplinary colloquium on Additive Manufacturing (AM) with focus on simulation and biohybrid robotics. Internationally renowned experts from academia and industry present cutting-edge research, highlighting the state-of-the-art and frontiers in the field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Participants become acquainted with the state-of-the-art and frontiers in Additive Manufacturing, a topic of global and future relevance for materials and process engineering. A focus is placed on simulation and biohybrid robotics applications. The self-study of relevant literature and active participation in discussions following presentations by internationally renowned speakers stimulate critical thinking and allow participants to deliberately discuss challenges and opportunities with leading academics and industrial experts and exchange ideas within an interdisciplinary community. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course is a colloquium involving a selected mix of internationally renowned speakers from academia and industry who present their cutting-edge research in the field of Additive Manufacturing. The self-study of relevant pre-read literature provided in advance of each lecture serves as a basis for active participation in the critical discussions following each presentation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Selected scientific pre-read literature (max. three articles per lecture) relevant for and discussed during the lectures is posted in advance on the course web page. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Participants should have a solid background in materials science and/or engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-5860-00L | Seminar in Robotics for CSE | 4 KP | 2S | M. Hutter, R. Katzschmann, E. Konukoglu, B. Nelson, R. Siegwart, M. Zeilinger | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course provides an opportunity to familiarize yourself with the advanced topics of robotics and mechatronics research. The seminar consists of a literature study, including a report and a presentation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students are familiar with the challenges of the fascinating and interdisciplinary field of Robotics and Mechatronics. They are introduced in the basics of independent non-experimental scientific research and are able to summarize and to present the results efficiently. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This 4 ECTS course requires each student to discuss a study plan with the lecturer and select minimum 10 relevant scientific publications to read through. At the end of semester, the results should be presented in an oral presentation and summarized in a report. |