Robert Katzschmann: Katalogdaten im Frühjahrssemester 2022 |
Name | Herr Prof. Dr. Robert Katzschmann |
Namensvarianten | Robert K. Katzschmann R. Katzschmann Robert K Katzschmann Robert Katzschmann Robert Kevin Katzschmann |
Lehrgebiet | Robotik |
Adresse | Professur für Robotik ETH Zürich, CLA F 1.2 Tannenstrasse 3 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 22 40 |
rkk@ethz.ch | |
URL | http://srl.ethz.ch |
Departement | Maschinenbau und Verfahrenstechnik |
Beziehung | Assistenzprofessor (Tenure Track) |
Nummer | Titel | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0073-51L | RAPTOR - Rapid Aerial Pick-and-Transfer of Objects by Robots ![]() Voraussetzung: Besuch der Lerneinheit 151-0073-50L RAPTOR - Rapid Aerial Pick-and-Transfer of Objects by Robots im HS21. | 14 KP | 15A | R. Katzschmann | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Im Team ein Produkt von A-Z entwickeln und realisieren! Anwenden und Vertiefen des bestehenden Wissens, Arbeiten in Teams, Selbständigkeit, Problemstrukturierung, Lösungsfindung in unscharfen Problemstellungen, Systembeschreibung und -simulation, Präsentation und Dokumentation, Realisationsfähigkeit, Werkstatt- und Industriekontakte, Anwendung modernster Ingenieur-Werkzeuge (Matlab, Simulink usw). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die vielfältigen Lernziele dieses Fokus-Projektes sind: - Synthetisieren und Vertiefen des theoretischen Wissens aus den Grundlagenfächern des 1.-4. Semesters - Teamorganisation, Arbeiten in Teams, Steigerung der sozialen Kompetenz - Selbständigkeit, Initiative, selbständiges Lernen neuer Themeninhalte - Problemstrukturierung, Lösungsfindung in unscharfen Problemstellungen, Suchen von Informationen - Systembeschreibung und -simulation - Präsentationstechnik, Dokumentationserstellung - Entscheidungsfähigkeit, Realisationsfähigkeit - Werkstatt- und Industriekontakte - Erweiterung und Vertiefung von Sachwissen - Beherrschung modernster Ingenieur-Werkzeuge (Matlab, Simulink, CAD, CAE, PDM) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Mehrere Teams mit je 4-8 Studierenden der ETH, ergänzt durch Studierende anderer Hochschulen und Universitäten, realisieren während zwei Semestern ein Produkt. Ausgehend von einer marktorientierten Problemstellung werden alle Prozesse der Produktentwicklung realitätsnah durchschritten: Marketing, Konzeption, Design, Engineering, Simulation, Entwurf und Produktion. Die Teams werden durch erfahrene Coachs betreut. Ein einmaliges Lernerlebnis wird ermöglicht. Innovationsideen aus der Industrie (z.T. auch aus Forschungsprojekten) werden gesammelt und durch den Lenkungsausschuss evaluiert. Aus ausgewählten Problemstellungen werden Aufgabenstellungen für die Teams formuliert. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0636-00L | Soft and Biohybrid Robotics ![]() ![]() | 4 KP | 3G | R. Katzschmann | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Soft and biohybrid robots are emerging fields taking inspiration from Nature to create integrated robots that are inherently safer to interact with. You will be able to create the structures, actuators, sensors, models, controllers, and machine learning architectures exploiting the deformable nature of these robots. You will apply the learned principles to challenges of your research domain. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Learning Objective 1: Convert any robotics challenge into a functional soft robotic physical prototype Step 1: Formulate suitable functional requirements Step 2: Select actuator material Step 3: Design + fabricate suitable for the task Step 4: Controller for basic functionality Step 5: Learning Approach for complex robotic skills Learning Objective 2: Formulate control and learning frameworks to highly articulated robots in real life scenarios Step 1: Formulate the dynamic skills needed for the real life scenario Step 2: Pick or combine suitable control and learning frameworks given the robot at hand Step 3: Evaluate the control approach for a real life scenario Step 4: Modify and enhance the control approach and repeat the evaluation Learning Objective 3: Apply the principle of mechanical impedance and embodied intelligence to any research challenge within any domain Step 1: Identify the moving aspects of the problem Step 2: Choose and design the passive and actively-controlled degrees of freedom Step 3: Pick the actuation material based on suitability to your challenge Step 4: Design in detail multiple combinations of body and brain Step 5: Simulate, build, test, fail, and repeat this often and quickly until the soft robot works for simple settings Step 6: Upgrade and validate the robot for performances in real world conditions Learning Objective 4: Rethink approaches to robotics by moving towards designs made of living materials Step 1: Identify what problems could be easier to solve with a complex living material Step 2: Scout for available works that have potentially tackled the problem with a living material Step 3: Formulate a hypothesis for your new approach with a living material Step 4: Design a minimum viable prototype (MVP) that properly highlights your new approach | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Students will cover a range of latest research insights on materials, fabrication technologies, and modeling approaches to design, simulate, and build soft and biohybrid robots. Part 1: Functional and intelligent materials for use in soft and biohybrid robotic applications Part 2: Design and design morphologies of soft robotic actuators and sensors Part 3: Fabrication techniques including 3D printing, casting, roll-to-roll, tissue engineering Part 4: Biohybrid robotics including microrobots and macrorobots; tissue engineering Part 5: Mechanical modeling including minimal parameter models, finite-element models and ML-based models Part 6: Closed-loop controllers of soft robots that exploit the robot's impedance and dynamics for locomotion and manipulation tasks Part 7: Machine Learning approaches to soft robotics, for design synthesis, modeling, and control A mandatory semester-long project will teach the participants to implement the skills and knowledge learned during the class by building their own soft robotic prototype or simulation. There is a mandatory pass/fail assignment to be submitted within the first two weeks of class to get a spot in the project. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | All class materials including slides, recordings, class challenges infos, pre-reads, and tutorial summaries can be found on Moodle: https://moodle-app2.let.ethz.ch/course/view.php?id=14501 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | 1) Wang, Liyu, Surya G. Nurzaman, and Fumiya Iida. "Soft-material robotics." (2017). 2) Polygerinos, Panagiotis, et al. "Soft robotics: Review of fluid‐driven intrinsically soft devices; manufacturing, sensing, control, and applications in human‐robot interaction." Advanced Engineering Materials 19.12 (2017): 1700016. 3) Verl, Alexander, et al. Soft Robotics. Berlin, Germany:: Springer, 2015. 4) Cianchetti, Matteo, et al. "Biomedical applications of soft robotics." Nature Reviews Materials 3.6 (2018): 143-153. 5) Ricotti, Leonardo, et al. "Biohybrid actuators for robotics: A review of devices actuated by living cells." Science Robotics 2.12 (2017). 6) Sun, Lingyu, et al. "Biohybrid robotics with living cell actuation." Chemical Society Reviews 49.12 (2020): 4043-4069. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | dynamics, controls, intro to robotics Only for students at master or PhD level. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
327-2224-00L | MaP Distinguished Lecture Series on Additive Manufacturing This course is primarily designed for MSc and doctoral students. Guests are welcome. | 1 KP | 2S | R. Katzschmann, L. De Lorenzis, L. Schefer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course is an interdisciplinary colloquium on Additive Manufacturing (AM) with focus on simulation and biohybrid robotics. Internationally renowned experts from academia and industry present cutting-edge research, highlighting the state-of-the-art and frontiers in the field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Participants become acquainted with the state-of-the-art and frontiers in Additive Manufacturing, a topic of global and future relevance for materials and process engineering. A focus is placed on simulation and biohybrid robotics applications. The self-study of relevant literature and active participation in discussions following presentations by internationally renowned speakers stimulate critical thinking and allow participants to deliberately discuss challenges and opportunities with leading academics and industrial experts and exchange ideas within an interdisciplinary community. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course is a colloquium involving a selected mix of internationally renowned speakers from academia and industry who present their cutting-edge research in the field of Additive Manufacturing. The self-study of relevant pre-read literature provided in advance of each lecture serves as a basis for active participation in the critical discussions following each presentation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Selected scientific pre-read literature (max. three articles per lecture) relevant for and discussed during the lectures is posted in advance on the course web page. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Participants should have a solid background in materials science and/or engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
327-2225-00L | MaP Distinguished Lecture Series on Soft Robotics Findet dieses Semester nicht statt. This course is primarily designed for MSc and doctoral students. Guests are welcome. | 1 KP | 2S | R. Katzschmann | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course is an interdisciplinary colloquium on Soft Robotics involving different internationally renowned speakers from academia and industry giving lectures about their cutting-edge research, which highlights the state-of-the-art and frontiers in the Soft Robotics field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Participants become acquainted with the state-of-the-art and frontiers in Soft Robotics, which is a topic of global and future relevance from the field of materials and process engineering. The self-study of relevant literature and active participation in discussions following presentations by internationally renowned speakers stimulate critical thinking and allow participants to deliberately discuss challenges and opportunities with leading academics and industrial experts and to exchange ideas within an interdisciplinary community. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course is a colloquium involving a selected mix of internationally renowned speaker from academia and industry who present their cutting-edge research in the field of Soft Robotics. The self-study of relevant pre-read literature provided in advance to each lecture serves as a basis for active participation in the critical discussions following each presentation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Selected scientific pre-read literature (max. three articles per lecture) relevant for and discussed during the lectures is posted in advance on the course web page. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Participants should have a solid background in materials science and/or engineering. |