André Bardow: Catalogue data in Autumn Semester 2024

Name Prof. Dr. André Bardow
FieldEnergy and Process Systems Engineering
Address
Energie- und Prozesssystemtechnik
ETH Zürich, CLA F 19.1
Tannenstrasse 3
8092 Zürich
SWITZERLAND
Telephone+41 44 632 94 60
E-mailabardow@ethz.ch
URLhttps://epse.ethz.ch/
DepartmentMechanical and Process Engineering
RelationshipFull Professor

NumberTitleECTSHoursLecturers
151-0051-00LThermodynamics I4 credits2V + 2UA. Bardow, C. Müller
AbstractIntroduction to the fundamentals of technical thermodynamics.
Learning objectiveIntroduction to the fundamentals of technical thermodynamics.
Content1. Konzepte und Definitionen
2. Der erste Hauptsatz, der Begriff der Energie und Anwendungen für geschlossene Systeme
3. Eigenschaften reiner kompressibler Substanzen, quasistatische Zustandsänderungen
4. Elemente der kinetischen Gastheorie
5. Der erste Hauptsatz in offenen Systemen - Energieanalyse in einem Kontrollvolumen
6. Der zweite Hauptsatz - Der Begriff der Entropie
7. Nutzbarkeit der Energie - Exergie
8. Thermodynamische Beziehungen für einfache, kompressible Substanzen.
Lecture notesavailable
LiteratureM.J. Moran, H.N Shapiro, D.D. Boettner and M.B. Bailey, Principles of Engineering Thermodynamics, 8th Edition, John Wiley and Sons, 2015.

H.D. Baehr and S. Kabelac, Thermodynamik, 15. Auflage, Springer Verlag, 2012.

P. Stephan, K. Schaber, K. Stephan and F. Mayinger, Thermodynamik – Grundlagen und technische Anwendungen, 19th edition, Springer Verlag, 2013. https://link.springer.com/book/10.1007%2F978-3-642-30098-1

H. Herwig, C. Kautz and A. Moschallski, Technische Thermodynamik, 2nd edition, Springer Vieweg, 2016. https://link.springer.com/book/10.1007%2F978-3-658-11888-4
Prerequisites / NoticeFor students in the bachelor's degree programme in mechanical engineering:
Precondition for this course unit are passed first year examination blocks A and B.
151-0209-00LRenewable Energy Technologies Information 4 credits3GA. Bardow, E. Casati
AbstractThe course covers the key concepts and aspects involved in: (i) the economics of renewable energy and its integration in the energy system, (ii) the engineering of prominent renewable energy technologies (solar, wind, hydro, geothermal and bioenergy), and (iii) energy storage, renewable transport and renewable heating & cooling.
Learning objectiveStudents learn the potential and limitations of renewable energy technologies and their contribution towards sustainable energy utilization.
Lecture notesLecture Notes containing copies of the presented slides.
Prerequisites / NoticePrerequisite: strong background on the fundamentals of engineering thermodynamics, equivalent to the material taught in the courses Thermodynamics I, II, and III of D-MAVT.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesfostered
Decision-makingfostered
Problem-solvingfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Personal CompetenciesCritical Thinkingfostered
151-0221-00LIntroduction to Modeling and Optimization of Sustainable Energy Systems4 credits4GG. Sansavini, A. Bardow, S. Moret
AbstractThis course introduces the fundamentals of energy system modeling for the analysis and the optimization of the energy system design and operations.
Learning objectiveAt the end of this course, students will be able to:
- define and quantify the key performance indicators of sustainable energy systems;
- select and apply appropriate models for conversion, storage and transport of energy;
- develop mathematical models for the analysis, design and operations of multi-energy systems and solve them with appropriate mathematical tools;
- select and apply methodologies for the uncertainty analysis on energy systems models;
- apply the acquired knowledge to tackle the challenges of the energy transition.

In the course "Introduction to Modeling and Optimization of Sustainable Energy Systems", the competencies of process understanding, system understanding, modeling, concept development, data analysis & interpretation and measurement methods are taught, applied and examined. Programming is applied.
ContentThe global energy transition; Key performance indicators of sustainable energy systems; Optimization models; Heat integration and heat exchanger networks; Life-cycle assessment; Models for conversion, storage and transport technologies; Multi-energy systems; Design, operations and analysis of energy systems; Uncertainties in energy system modeling.
Lecture notesLecture slides and supplementary documentation will be available online. Reference to appropriate book chapters and scientific papers will be provided.