## Carlos Cotrini Jimenez: Catalogue data in Autumn Semester 2021 |

Name | Dr. Carlos Cotrini Jimenez |

Address | Lehre D-INFK ETH Zürich, CAB H 32.2 Universitätstrasse 6 8092 Zürich SWITZERLAND |

ccarlos@inf.ethz.ch | |

URL | https://inf.ethz.ch/personal/ccarlos |

Department | Computer Science |

Relationship | Lecturer |

Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|

252-0535-00L | Advanced Machine Learning | 10 credits | 3V + 2U + 4A | J. M. Buhmann, C. Cotrini Jimenez | |

Abstract | Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects. | ||||

Learning objective | Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data. | ||||

Content | The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data. Topics covered in the lecture include: Fundamentals: What is data? Bayesian Learning Computational learning theory Supervised learning: Ensembles: Bagging and Boosting Max Margin methods Neural networks Unsupservised learning: Dimensionality reduction techniques Clustering Mixture Models Non-parametric density estimation Learning Dynamical Systems | ||||

Lecture notes | No lecture notes, but slides will be made available on the course webpage. | ||||

Literature | C. Bishop. Pattern Recognition and Machine Learning. Springer 2007. R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley & Sons, second edition, 2001. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, 2001. L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2004. | ||||

Prerequisites / Notice | The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution. PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points. | ||||

252-0845-00L | Computer Science I | 5 credits | 2V + 2U | C. Cotrini Jimenez, R. Sasse | |

Abstract | The course covers the basic concepts of computer programming. | ||||

Learning objective | Basic understanding of programming concepts. Students will be able to write and read simple programs and to modify existing programs. | ||||

Content | Variablen, Typen, Kontrollanweisungen, Prozeduren und Funktionen, Scoping, Rekursion, dynamische Programmierung, vektorisierte Programmierung, Effizienz. Als Lernsprache wird Java eingesetzt. | ||||

Literature | Sprechen Sie Java? Hanspeter Mössenböck dpunkt.verlag |