Konstantinos Tatsis: Katalogdaten im Herbstsemester 2021 |
Name | Herr Dr. Konstantinos Tatsis |
Adresse | Swiss Data Science Center (SDSC) ETH Zürich, OAT W 25 Andreasstrasse 5 8092 Zürich SWITZERLAND |
Telefon | +41 44 633 79 66 |
konstantinos.tatsis@sdsc.ethz.ch | |
Departement | Bau, Umwelt und Geomatik |
Beziehung | Dozent |
Nummer | Titel | ECTS | Umfang | Dozierende | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101-0159-00L | Method of Finite Elements II | 3 KP | 2G | E. Chatzi, K. Tatsis | ||||||||||||||||||||
Kurzbeschreibung | The Method of Finite Elements II is a continuation of Method of Finite Elements I. Here, we explore the theoretical and numerical implementation concepts for the finite element analysis beyond the linear elastic behavior. This course aims to offer students with the skills to perform nonlinear FEM simulations using coding in Python. *This course offers no introduction to commercial software. | |||||||||||||||||||||||
Lernziel | This class overviews advanced topics of the Method of Finite Elements, beyond linear elasticity. Such phenomena are particularly linked to excessive loading effects and energy dissipation mechanisms. Their understanding is necessary for reliably computing structural capacity. In this course, instead of blindly using generic structural analysis software, we offer an explicit understanding of what goes on behind the curtains, by explaining the algorithms that are used in such software. The course specifically covers the treatment of the following phenomena: - Material Nonlinearity (Plasticity) - Geometric Nonlinearity (Large Displacement Problems) - Nonlinear Dynamics - Fracture Mechanics The concepts are introduced via theory, numerical examples, demonstrators and computer labs in Python (starting Fall 2021). Upon completion of the course, the participants will be able to: - Recognize when linear elastic analysis is insufficient - Solve nonlinear dynamics problems, which form the core for limit state calculations (e.g. ultimate capacity, failure) of structures - Numerically simulate fracture; a dominant failure phenomenon for structural systems. See the class webpage for more information: http://www.chatzi.ibk.ethz.ch/education/method-of-finite-elements-ii.html | |||||||||||||||||||||||
Skript | The course slides serve as Script. These are openly available on: http://www.chatzi.ibk.ethz.ch/education/method-of-finite-elements-ii.html | |||||||||||||||||||||||
Literatur | Course Slides (Script): http://www.chatzi.ibk.ethz.ch/education/method-of-finite-elements-ii.html Useful (optional) Reading: - Nonlinear Finite Elements of Continua and Structures, T. Belytschko, W.K. Liu, and B. Moran. - Bathe, K.J., Finite Element Procedures, Prentice Hall, 1996. - Crisfield, M.A., Remmers, J.J. and Verhoosel, C.V., 2012. Nonlinear finite element analysis of solids and structures. John Wiley & Sons. - De Souza Neto, E.A., Peric, D. and Owen, D.R., 2011. Computational methods for plasticity: theory and applications. John Wiley & Sons. | |||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: -101-0158-01 Method of Finite Elements I (FS) - A good knowledge of Python is necessary for attending this course. | |||||||||||||||||||||||
Kompetenzen![]() |
|