Dino Carpentras: Catalogue data in Autumn Semester 2023

Name Dr. Dino Carpentras
Address
Computational Social Science
ETH Zürich, STD F 2
Stampfenbachstrasse 48
8092 Zürich
SWITZERLAND
E-maildino.carpentras@gess.ethz.ch
DepartmentHumanities, Social and Political Sciences
RelationshipLecturer

NumberTitleECTSHoursLecturers
851-0101-86LComplex Social Systems: Modeling Agents, Learning, and Games Information Restricted registration - show details
Prerequisites: Basic programming skills, elementary probability and statistics.
3 credits2SD. N. Dailisan, D. Carpentras, D. Helbing
AbstractThis course introduces mathematical and computational models to study techno-socioeconomic systems and the process of scientific research. Students develop a significant project to tackle techno-socio-economic challenges in application domains of complex systems. They are expected to implement a model and to communicate their results through a project report and a short oral presentation.
Learning objectiveSee your own field of study in a wider context (“Science in Perspective”), e.g. see the psychological, social, economic, environmental, historical, ethical,or philosophical connections and implications. Learn to think critically and out of the box. Question what you believe you know for sure. Get to know surprising, counterintuitive properties of complex (non-linearly interacting, networked, multi-component) systems. Learn about collaboration.
ContentBy the end of the course, the students should be able to better understand the literature on complex social systems, develop their own models for studying specific phenomena and report results according to the standards of the relevant scientific literature by presenting their results both numerically and graphically.

At the end of the course, the students will deliver a report, computer code and a short oral presentation. To collect credit points, students will have to actively contribute and give a circa 30 minutes presentation in the course on a subject agreed with the lecturers, after which the presentation will be discussed. The presentation will be graded.

Students are expected to implement themselves models of techno-socio-economic processes and systems, particularly agent-based models, complex networks models, decision making, group dynamics, human crowds, or game-theoretical models. Credit points are finally earned for the implementation of a mathematical or empirical model from the complexity science literature, its presentation, and documentation by a project report.
Lecture notesThe lecture slides will be presented on the course Moodle after each lecture.
LiteratureAgent-Based Modeling
https://link.springer.com/chapter/10.1007/978-3-642-24004-1_2

Social Self-Organization
https://www.springer.com/gp/book/9783642240034

Traffic and related self-driven many-particle systems
Reviews of Modern Physics 73, 1067
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.73.1067

An Analytical Theory of Traffic Flow (collection of papers)
https://www.researchgate.net/publication/261629187

Pedestrian, Crowd, and Evacuation Dynamics
https://www.research-collection.ethz.ch/handle/20.500.11850/45424

The hidden geometry of complex, network-driven contagion phenomena (relevant for modeling pandemic spread)
https://science.sciencemag.org/content/342/6164/1337
Prerequisites / NoticeThe number of participants is limited to the size of the available computer teaching room. The source code related to the seminar thesis should be well enough documented.

Good programming skills and a good understanding of probability & statistics and calculus are expected.

Students need to present a new subject, for which they have not earned any credit points before.

Good scientific practices, in particular citation and quotation rules, must be properly complied with.

Chatham House rules apply to this course. Materials may
not be shared without previous written permission.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityassessed
Self-presentation and Social Influence assessed
Sensitivity to Diversityassessed
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityassessed
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsassessed
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed
860-0011-00LComplex Social Systems: Modeling Agents, Learning, and Games - With Coding Project Restricted registration - show details
Prerequisites: Good mathematical skills, basic programming skills, elementary probability and statistics.
6 credits2S + 2AD. N. Dailisan, D. Helbing, D. Carpentras
AbstractThis course introduces mathematical and computational models to study techno-socio-economic systems and the process of scientific research.
Students develop a significant project to tackle techno-socio-economic challenges in application domains of complex systems. They are expected to implement a model and communicating their results through a seminar thesis and a short oral presentation.
Learning objectiveThe students are expected to know a programming language and environment (Python, Java or Matlab) as a tool to solve various scientific problems. The use of a high-level programming environment makes it possible to quickly find numerical solutions to a wide range of scientific problems. Students will learn to take advantage of a rich set of tools to present their results numerically and graphically.

The students should be able to implement simulation models and document their skills through a seminar thesis and finally give a short oral presentation.
ContentStudents are expected to implement themselves models of various social processes and systems, including agent-based models, complex networks models, decision making, group dynamics, human crowds, or game-theoretical models.

Credit points are finally earned for the implementation of a mathematical or empirical model from the complexity science literature and the documentation in a seminar thesis.
Lecture notesThe lecture slides will be presented on the course web page after each lecture.
LiteratureAgent-Based Modeling
https://link.springer.com/chapter/10.1007/978-3-642-24004-1_2

Social Self-Organization
https://www.springer.com/gp/book/9783642240034

Traffic and related self-driven many-particle systems
Reviews of Modern Physics 73, 1067
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.73.1067

An Analytical Theory of Traffic Flow (collection of papers)
https://www.researchgate.net/publication/261629187

Pedestrian, Crowd, and Evacuation Dynamics
https://www.research-collection.ethz.ch/handle/20.500.11850/45424

The hidden geometry of complex, network-driven contagion phenomena (relevant for modeling pandemic spread)
https://science.sciencemag.org/content/342/6164/1337

Further literature will be recommended in the lectures.
Prerequisites / NoticeThe number of participants is limited to the size of the available computer teaching room. The source code related to the seminar thesis should be well enough documented.

Good programming skills and a good understanding of probability & statistics and calculus are expected.

Students need to present a new subject, for which they have not earned any credit points before.

Good scientific practices, in particular citation and quotation rules, must be properly complied with.

Chatham House rules apply to this course. Materials may not be shared without previous written permission.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityassessed
Self-presentation and Social Influence assessed
Sensitivity to Diversityassessed
Negotiationassessed
Personal CompetenciesAdaptability and Flexibilityassessed
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsassessed
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed