Paolo Arosio: Katalogdaten im Herbstsemester 2023

NameHerr Prof. Dr. Paolo Arosio
LehrgebietBioingenieurwissenschaften
Adresse
Professur Bioingenieurwissenschaft
ETH Zürich, HCI F 129
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Telefon+41 44 633 94 40
E-Mailpaolo.arosio@chem.ethz.ch
DepartementChemie und Angewandte Biowissenschaften
BeziehungAusserordentlicher Professor

NummerTitelECTSUmfangDozierende
529-0615-01LBiochemical and Polymer Reaction Engineering6 KP3GP. Arosio
KurzbeschreibungPolymerization reactions and processes. Homogeneous and heterogeneous (emulsion) kinetics of free radical polymerization. Post treatment of polymer colloids. Bioprocesses for the production of molecules and therapeutic proteins. Kinetics and design of aggregation processes of macromolecules and proteins.
LernzielThe aim of the course is to learn how to design polymerization reactors and bioreactors to produce polymers and proteins with the specific product qualities that are required by different applications in chemical, pharmaceutical and food industry. This activity includes the post-treatment of polymer latexes, the downstream processing of proteins and the analysis of their colloidal behavior.
InhaltWe will cover the fundamental processes and the operation units involved in the production of polymeric materials and proteins. In particular, the following topics are discussed: Overview on the different polymerization processes. Kinetics of free-radical polymerization and use of population balance models. Production of polymers with controlled characteristics in terms of molecular weight distribution. Kinetics and control of emulsion polymerization. Surfactants and colloidal stability. Aggregation kinetics and aggregate structure in conditions of diffusion and reaction limited aggregation. Modeling and design of colloid aggregation processes. Physico-chemical characterization of proteins and description of enzymatic reactions. Operation units in bioprocessing: upstream, reactor design and downstream. Industrial production of therapeutic proteins. Characterization and engineering of protein aggregation. Protein aggregation in biology and in biotechnology as functional materials.
SkriptScripts are available on the web page of the Arosio-group: http://www.arosiogroup.ethz.ch/education.html
Additional handout of slides will be provided during the lectures.
LiteraturR.J. Hunter, Foundations of Colloid Science, Oxford University Press, 2nd edition, 2001
D. Ramkrishna, Population Balances, Academic Press, 2000
H.W. Blanch, D. S. Clark, Biochemical Engineering, CRC Press, 1995
529-0632-00LHomogeneous Reaction Engineering4 KP3GP. Arosio
KurzbeschreibungHomogene Reaktionstechnik, Ideale Reaktoren: Optimierung von Umsatz und Selektivitaet komplexer kinetischer Netzwerke. Waermeeffekte in chemischen Reaktoren. Verweilzeitverteilungen. Analyse und Auslegung chemischer Reaktoren. Schnelle Reaktionen in turbulenter Stroemung. Sensitivitaet und Stabilitaet chemischer Reaktoren.
LernzielBereitstellung einer kompletten Methodologie fuer die Analyse und Auslegung homogener Reaktoren
InhaltKinetische Modelle für homogene Reaktionen. Ermittlung und Analyse experimenteller Geschwindigkeitsdaten. Isotherme ideale Reaktoren. Komplexe Reaktionsnetzwerke. Reaktordesign zur Umsatz- und Selektivitätsoptimierung. Adiabatische und nicht-isotherme Reaktoren. Temperatureffekte auf reversible Reaktionen. Verweilzeitverteilung in chemischen Reaktoren. Mischungseffekte in reagierenden Systemen. Design realer Reaktoren. Parametrische Sensitivitaet und Reaktorstabilität.
SkriptScripts are available on line on the web page of the Arosio group.
LiteraturH.S. Fogler, Elements of Chemical Reaction Engineering, Prentice Hall, 3rd edition, 1999
O. Levenspiel, Chemical Reaction Engineering, John Wiley, 3rd edition, 1999
529-0690-00LICB Seminars on Chemical and Biochemical Engineering1 KPP. Arosio
KurzbeschreibungThe ICB seminar series covers the umbrella of diverse research activities encompassed within the institute, including catalysis, functional materials, polymer engineering, separations, microfluidics, process design, and systems engineering. This series was founded with the aim or promoting cross-disciplinary scientific discourse and interaction with other distinguished groups working worldwide.
LernzielStudents are expected to attend all seminars in one academic year, and should register at the beginning of each seminar. Additionally they must deliver a two page written report at the end of the year describing the topics covered, main conclusions, and interrelationships between the different themes.
InhaltThe ICB seminar series covers the umbrella of diverse research activities encompassed within the institute, including catalysis, functional materials, polymer engineering, separations, microfluidics, process design, and systems engineering. This series was founded with the aim or promoting cross-disciplinary scientific discourse and interaction with other distinguished groups working worldwide, and is targeted at individuals who have made outstanding contributions within their fields. Each year, around 7 distinguished scientists and technologists will be invited to speak on topics of current interest in Chemical and Biochemical Engineering. PhD students are particularly encouraged to attend in order to broaden their perception and enrich their scientific horizons.
551-0357-00LCellular Matters: Properties, Functions and Applications of Biomolecular Condensates
The number of participants is limited to 30 and will only take place with a minimum of 6 participants.

The first lecture will serve to form groups of students and assign papers.
4 KP2ST. Michaels, F. Allain, P. Arosio, Y. Barral, D. Hilvert, M. Jagannathan, R. Mezzenga, G. Neurohr, R. Riek, A. E. Smith, K. Weis, H. Wennemers, weitere Dozierende
KurzbeschreibungThis Master level course delves into the emerging field of biomolecular condensates - membrane-less organelles in cells. Using interdisciplinary concepts from biology, chemistry, biophysics, and soft matter, we will explore the biological properties of these condensates, their functions in health and disease, and their potentiol as new biomimetic materials for various applications.
LernzielIn the last decade, a novel type of cell compartments called biomolecular condensates have been discovered. This discovery is radically changing our understanding of the cell, its organization, and dynamics. The emerging picture is that the cytoplasm and nucleoplasm are highly complex fluids that can (meta)stably segregate into membrane-less compartments, similary to emulsions.

This interdisciplinary course encompasses milestone works and cutting-edge research questions in the young field of biomolecular condensates, including their properties, functions, and applications. The course begins with a lecture series that introduces the topic of condensates to an interdisciplinary audience and provides a theoretical foundation for understanding current research questions in the field. the lecturesprovide a base for student presentations of recent publications in the field, and for research seminars given by course lecturers, who are all active researchers with diverse expertise. Through this exciting interdisciplinary understanding of biomolecular condensates, bridging biology, chemistry, biophysics, and soft matter.

Students will not only learn how to critically read and evaluate scientific literature but will also gain valuable experience in giving scientific presentations to an interdisciplinary audience. Each presentation will require an introduction, critical analysis of the results, and a discussion of their significance, allowing student to substantiate their statements with a critical mindset that considers the pros and cons of chosen approaches and methods, as well as any limitations or possible follow-up experiments. This process will enable student to ask relevant querions and actively participate in class discussions, further enhancing their scientific skills.

In preparing the presentations, the students will have the unique opportunity to interact closely with each other and with the lecturers, who are all internationally well-established experts, and receive guidance in selectin a topic for the final presentaton and supporting literature.
InhaltThe topic of biomolecular condensates goes beyond the boundaries of traditional disciplines and requires a multi-disciplinary approach that leverages and cross-fertilizes biology, physical chemistry, biophysics, and soft matter. This course will explore the properties, functions and potentioal applicatons of biomolecular condensates, including their role in neurodegenerative diseases such as Alzheimer's and Parkinson's, as well as their use as smart biomimetic materials.

This course is divided into two parts. The fist part will introduce the basic concepts essentialto the study of biomolecular condensates and phase separation. Topics include: fundamental units and scales in soft matter, phase transitions in biology, biopolymers and molecular self-assembly, introduction to active matter. This will establish a foundation for the second part, which will explore milestone works and current research in the field of biomolecular condensates. Each lecture of this second part will consist of:
1) a short literature seminar, where student groups will present and discuss a milestone paper assigned in advance and
2) a research seminar, where one of the course lecturers will present their own state-of-the art research in the field, building upon the milestone literature.
At the beginning of the course, student groups will be formed and assigned the milestone papers.
SkriptLecture slides and some scripts will be provided.
LiteraturNo compulsory textbooks. Literature will be provided during the course
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggefördert
Medien und digitale Technologiengefördert
Problemlösunggefördert
Projektmanagementgefördert
Soziale KompetenzenKommunikationgeprüft
Kooperation und Teamarbeitgeprüft
Kundenorientierunggefördert
Menschenführung und Verantwortunggeprüft
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt geprüft
Verhandlunggeprüft
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengeprüft
Kritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert