151-0636-00L  Soft and Biohybrid Robotics

SemesterFrühjahrssemester 2022
DozierendeR. Katzschmann
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
151-0636-00 GSoft and Biohybrid Robotics3 Std.
Mo09:15-12:00LEE E 101 »
R. Katzschmann

Katalogdaten

KurzbeschreibungSoft and biohybrid robots are emerging fields taking inspiration from Nature to create integrated robots that are inherently safer to interact with. You will be able to create the structures, actuators, sensors, models, controllers, and machine learning architectures exploiting the deformable nature of these robots. You will apply the learned principles to challenges of your research domain.
LernzielLearning Objective 1: Convert any robotics challenge into a functional soft robotic physical prototype
Step 1: Formulate suitable functional requirements
Step 2: Select actuator material
Step 3: Design + fabricate suitable for the task
Step 4: Controller for basic functionality
Step 5: Learning Approach for complex robotic skills

Learning Objective 2: Formulate control and learning frameworks to highly articulated robots in real life scenarios
Step 1: Formulate the dynamic skills needed for the real life scenario
Step 2: Pick or combine suitable control and learning frameworks given the robot at hand
Step 3: Evaluate the control approach for a real life scenario
Step 4: Modify and enhance the control approach and repeat the evaluation

Learning Objective 3: Apply the principle of mechanical impedance and embodied intelligence to any research challenge within any domain
Step 1: Identify the moving aspects of the problem
Step 2: Choose and design the passive and actively-controlled degrees of freedom
Step 3: Pick the actuation material based on suitability to your challenge
Step 4: Design in detail multiple combinations of body and brain
Step 5: Simulate, build, test, fail, and repeat this often and quickly until the soft robot works for simple settings
Step 6: Upgrade and validate the robot for performances in real world conditions

Learning Objective 4: Rethink approaches to robotics by moving towards designs made of living materials
Step 1: Identify what problems could be easier to solve with a complex living material
Step 2: Scout for available works that have potentially tackled the problem with a living material
Step 3: Formulate a hypothesis for your new approach with a living material
Step 4: Design a minimum viable prototype (MVP) that properly highlights your new approach
InhaltStudents will cover a range of latest research insights on materials, fabrication technologies, and modeling approaches to design, simulate, and build soft and biohybrid robots.

Part 1: Functional and intelligent materials for use in soft and biohybrid robotic applications
Part 2: Design and design morphologies of soft robotic actuators and sensors
Part 3: Fabrication techniques including 3D printing, casting, roll-to-roll, tissue engineering
Part 4: Biohybrid robotics including microrobots and macrorobots; tissue engineering
Part 5: Mechanical modeling including minimal parameter models, finite-element models and ML-based models
Part 6: Closed-loop controllers of soft robots that exploit the robot's impedance and dynamics for locomotion and manipulation tasks
Part 7: Machine Learning approaches to soft robotics, for design synthesis, modeling, and control

A mandatory semester-long project will teach the participants to implement the skills and knowledge learned during the class by building their own soft robotic prototype or simulation. There is a mandatory pass/fail assignment to be submitted within the first two weeks of class to get a spot in the project.
SkriptAll class materials including slides, recordings, class challenges infos, pre-reads, and tutorial summaries can be found on Moodle: https://moodle-app2.let.ethz.ch/course/view.php?id=14501
Literatur1) Wang, Liyu, Surya G. Nurzaman, and Fumiya Iida. "Soft-material robotics." (2017).
2) Polygerinos, Panagiotis, et al. "Soft robotics: Review of fluid‐driven intrinsically soft devices; manufacturing, sensing, control, and applications in human‐robot interaction." Advanced Engineering Materials 19.12 (2017): 1700016.
3) Verl, Alexander, et al. Soft Robotics. Berlin, Germany:: Springer, 2015.
4) Cianchetti, Matteo, et al. "Biomedical applications of soft robotics." Nature Reviews Materials 3.6 (2018): 143-153.
5) Ricotti, Leonardo, et al. "Biohybrid actuators for robotics: A review of devices actuated by living cells." Science Robotics 2.12 (2017).
6) Sun, Lingyu, et al. "Biohybrid robotics with living cell actuation." Chemical Society Reviews 49.12 (2020): 4043-4069.
Voraussetzungen / Besonderesdynamics, controls, intro to robotics
Only for students at master or PhD level.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggefördert
Medien und digitale Technologiengeprüft
Problemlösunggeprüft
Projektmanagementgeprüft
Soziale KompetenzenKommunikationgeprüft
Kooperation und Teamarbeitgeprüft
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt gefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgeprüft
Kreatives Denkengeprüft
Kritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement geprüft

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte4 KP
PrüfendeR. Katzschmann
FormSemesterendprüfung
PrüfungsspracheEnglisch
RepetitionEs wird ein Repetitionstermin in den ersten zwei Wochen des unmittelbar nachfolgenden Semesters angeboten.
Prüfungsmodusschriftlich 120 Minuten
Zusatzinformation zum PrüfungsmodusThe assessment will be a written examination with 50% weight and a compulsory continuous assessment throughout the semester with 50% weight.

The written exam covers all contents of the course, including the lectures, exercises, and learning activities. The exam counts 50% towards the final grade.

The compulsory continuous assessment throughout the semester will consist of one short pass/fail essay due after the first two weeks and two graded assignments: (1) a written proposal that has 15% weight of the final grade, and (2) a project with final demonstration, presentation, and short paper (35%). Not handing in an assignment will result in the grade 1.0 for that assignment. The remaining 50% of the final grade will be based on the written exam.
Hilfsmittel schriftlichKeine

Lernmaterialien

 
HauptlinkSoft and Biohybrid Robotics Class
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

PlätzeMaximal 40
WartelisteBis 06.03.2022

Angeboten in

StudiengangBereichTyp
Biomedical Engineering MasterWahlfächer der VertiefungWInformation
Biomedical Engineering MasterWahlfächer der VertiefungWInformation
Biomedical Engineering MasterWahlfächer der VertiefungWInformation
Maschineningenieurwissenschaften MasterBioengineeringWInformation
Rechnergestützte Wissenschaften MasterRobotikWInformation
Robotics, Systems and Control MasterKernfächerWInformation