263-4508-00L  Algorithmic Foundations of Data Science

SemesterFrühjahrssemester 2023
DozierendeD. Steurer
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
263-4508-00 VAlgorithmic Foundations of Data Science3 Std.
Do10:15-12:00CAB G 51 »
Fr12:15-13:00ML F 36 »
D. Steurer
263-4508-00 UAlgorithmic Foundations of Data Science2 Std.
Fr14:15-16:00ML F 36 »
D. Steurer
263-4508-00 AAlgorithmic Foundations of Data Science4 Std.D. Steurer

Katalogdaten

KurzbeschreibungThis course provides rigorous theoretical foundations for the design and mathematical analysis of efficient algorithms that can solve fundamental tasks relevant to data science.
LernzielWe consider various statistical models for basic data-analytical tasks, e.g., (sparse) linear regression, principal component analysis, matrix completion, community detection, and clustering.

Our goal is to design efficient (polynomial-time) algorithms that achieve the strongest possible (statistical) guarantees for these models.

Toward this goal we learn about a wide range of mathematical techniques from convex optimization, linear algebra (especially, spectral theory and tensors), and high-dimensional statistics.

We also incorporate adversarial (worst-case) components into our models as a way to reason about robustness guarantees for the algorithms we design.
InhaltStrengths and limitations of efficient algorithms in (robust) statistical models for the following (tentative) list of data analysis tasks:

- (sparse) linear regression
- principal component analysis and matrix completion
- clustering and Gaussian mixture models
- community detection
SkriptTo be provided during the semester
LiteraturHigh-Dimensional Statistics
A Non-Asymptotic Viewpoint
by Martin J. Wainwright
Voraussetzungen / BesonderesMathematical and algorithmic maturity at least at the level of the course "Algorithms, Probability, and Computing".

Important: Optimization for Data Science 2018--2021
This course was created after a reorganization of the course "Optimization for Data Science" (ODS).
A significant portion of the material for this course has previously been taught as part of ODS.
Consequently, it is not possible to earn credit points for both this course and ODS as offered in 2018--2021.
This restriction does not apply to ODS offered in 2022 or afterwards and you can earn credit points for both courses in this case.

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte10 KP
PrüfendeD. Steurer
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird nur in der Session nach der Lerneinheit angeboten. Die Repetition ist nur nach erneuter Belegung möglich.
Prüfungsmodusschriftlich 240 Minuten
Zusatzinformation zum PrüfungsmodusDuring the course of the semester, we will assign two graded homeworks as compulsory continuous performance assessments, accounting together for 30% of the final grade (15% for each graded homework).
The written session examination accounts for the remaining 70% of the final grade.
Hilfsmittel schriftlichKeine
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

 
HauptlinkCourse Website
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
CAS in InformatikVertiefungsfächer und WahlfächerWInformation
Cyber Security MasterKernfächerWInformation
Data Science MasterWählbare KernfächerWInformation
Informatik MasterKernfächerWInformation
Informatik MasterErgänzung in Theoretical Computer ScienceWInformation