376-1217-00L  Rehabilitation Engineering I: Motor Functions

SemesterFrühjahrssemester 2023
DozierendeR. Riener, C. E. Awai
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
376-1217-00 VRehabilitation Engineering I: Motor Functions2 Std.
Di08:15-10:00HG E 1.2 »
R. Riener, C. E. Awai
376-1217-00 URehabilitation Engineering I: Motor Functions1 Std.
Fr08:15-09:00HG E 1.1 »
R. Riener

Katalogdaten

Kurzbeschreibung“Rehabilitation” is the (re)integration of an individual with a disability into society. Rehabilitation engineering is “the application of science and technology to ameliorate the handicaps of individuals with disability”. Such handicaps can be classified into motor, sensor, and cognitive disabilities. In general, one can distinguish orthotic and prosthetic methods to overcome these disabilities.
LernzielThe goal of this course is to present classical and new technical principles as well as specific examples applied to compensate or enhance motor deficits. In the 1 h exercise the students will learn how to solve representative problems with computational methods applied to exoprosthetics, wheelchair dynamics, rehabilitation robotics and neuroprosthetics.
InhaltModern methods rely more and more on the application of multi-modal and interactive techniques. Multi-modal means that visual, acoustical, tactile, and kinaesthetic sensor channels are exploited to display information to the patient. Interaction means that the exchange of information and energy occurs bi-directionally between the rehabilitation device and the human being. Thus, the device cooperates with the patient rather than imposing an inflexible strategy (e.g., movement) upon the patient. These principles are recurrent in modern technological tools to support rehabilitation, including prosthesis, orthoses, powered exoskeletons, powered wheelchairs, therapy robots and virtual reality systems.
LiteraturBooks:

Burdet, Etienne, David W. Franklin, and Theodore E. Milner. Human robotics: neuromechanics and motor control. MIT press, 2013.

Krakauer, John W., and S. Thomas Carmichael. Broken movement: the neurobiology of motor recovery after stroke. MIT Press, 2017.

Teodorescu, Horia-Nicolai L., and Lakhmi C. Jain, eds. Intelligent systems and technologies in rehabilitation engineering. CRC press, 2000.

Winters, Jack M., and Patrick E. Crago, eds. Biomechanics and neural control of posture and movement. Springer Science & Business Media, 2012.

Selected Journal Articles:

Abbas, James J., and Robert Riener. "Using mathematical models and advanced control systems techniques to enhance neuroprosthesis function." Neuromodulation: Technology at the Neural Interface 4.4 (2001): 187-195.

Basalp, Ekin, Peter Wolf, and Laura Marchal-Crespo. "Haptic training: which types facilitate (re) learning of which motor task and for whom Answers by a review." IEEE Transactions on Haptics (2021).

Calabrò, Rocco Salvatore, et al. "Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now?." Neurological Sciences 37.4 (2016): 503-514.

Cooper, R. (1993) Stability of a wheelchair controlled by a human. IEEE Transactions on Rehabilitation Engineering 1, pp. 193-206.

Gassert, Roger, and Volker Dietz. "Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective." Journal of neuroengineering and rehabilitation 15.1 (2018): 1-15.

Laver, Kate E., et al. "Virtual reality for stroke rehabilitation." Cochrane database of systematic reviews 11 (2017).

Marquez-Chin, Cesar, and Milos R. Popovic. "Functional electrical stimulation therapy for restoration of motor function after spinal cord injury and stroke: a review." Biomedical engineering online 19 (2020): 1-25.

Miller, Larry E., Angela K. Zimmermann, and William G. Herbert. "Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis." Medical devices (Auckland, NZ) 9 (2016): 455.

Raspopovic, Stanisa. "Advancing limb neural prostheses." Science 370.6514 (2020): 290-291.

Riener, R. (2013) Rehabilitation Robotics. Foundations and Trends in Robotics, Vol. 3, nos. 1-2, pp. 1-137.

Riener, R., Lünenburger, L., Maier, I. C., Colombo, G., & Dietz, V. (2010). Locomotor training in subjects with sensori-motor deficits: An overview of the robotic gait orthosis Lokomat. Journal of Healthcare Engineering, 1(2), 197-216.

Riener, R., Nef, T., Colombo, G. (2005) Robot-aided neurorehabilitation for the upper extremities. Medical & Biological Engineering & Computing 43(1), pp. 2-10.

Sigrist, Roland, et al. "Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review." Psychonomic bulletin & review 20.1 (2013): 21-53.

Xiloyannis, Michele, et al. "Soft Robotic Suits: State of the Art, Core Technologies, and Open Challenges." IEEE Transactions on Robotics (2021).
Voraussetzungen / BesonderesTarget Group:
Students of higher semesters and PhD students of
- D-MAVT, D-ITET, D-INFK
- Biomedical Engineering
- Medical Faculty, University of Zurich
Students of other departments, faculties, courses are also welcome

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
ECTS Kreditpunkte4 KP
PrüfendeR. Riener, C. E. Awai
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird nur in der Session nach der Lerneinheit angeboten. Die Repetition ist nur nach erneuter Belegung möglich.
Prüfungsmodusschriftlich 60 Minuten
Hilfsmittel schriftlichKeine Hilfsmittel erlaubt, ausser einem Wörterbuch (English dictionary)
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

Keine öffentlichen Lernmaterialien verfügbar.
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

Keine Informationen zu Gruppen vorhanden.

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Biomedical Engineering MasterWahlfächer der VertiefungWInformation
Biomedical Engineering MasterWahlfächer der VertiefungWInformation
Elektrotechnik und Informationstechnologie MasterVertiefungsfächerWInformation
Elektrotechnik und Informationstechnologie MasterEmpfohlene FächerWInformation
Gesundheitswissenschaften und Technologie MasterWahlfächerWInformation
Gesundheitswissenschaften und Technologie MasterWahlfächer IIWInformation
MAS in Medical PhysicsWahlfächerWInformation
MAS in Medical PhysicsWahlfächerWInformation
Maschineningenieurwissenschaften MasterMechanics, Materials, StructuresWInformation
Maschineningenieurwissenschaften MasterRobotics, Systems and ControlWInformation
Maschineningenieurwissenschaften MasterBioengineeringWInformation
Robotics, Systems and Control MasterKernfächerWInformation