Sobolev spaces, weak solutions of elliptic boundary value problems, basic results in elliptic regularity theory (including Schauder estimates), maximum principles. Basic results for hyperbolic PDE.
Lernziel
Acquire fluency with Sobolev spaces and weak derivatives on the one hand, and basic elliptic regularity on the other. Apply these methods to the study of elliptic boundary value problems, and to initial value problems for hyperbolic PDE.
Literatur
Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011.
David Gilbarg, Neil Trudinger. Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin, 2001.
Michael Taylor. Partial differential equations I. Basic theory. Second edition. Applied Mathematical Sciences, 115. Springer, New York, 2011.
Lars Hörmander. The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Classics in Mathematics. Springer, Berlin, 2003.
Qing Han, Fanghua Lin. Elliptic partial differential equations. Second edition. Courant Lecture Notes in Mathematics, 1. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2011.
Voraussetzungen / Besonderes
Functional Analysis I and fluency in multivariable calculus.
Leistungskontrolle
Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)