Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations of the theory as well as the underlying physical principles and concepts. It covers selected applications, such as the Schwarzschild solution and gravitational waves.
Learning objective
Basic understanding of general relativity, its mathematical foundations (in particular the relevant aspects of differential geometry), and some of the phenomena it predicts (with a focus on black holes).
Content
Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations, such as differentiable manifolds, the Riemannian and Lorentzian metric, connections, and curvature. It discusses the underlying physical principles, e.g., the equivalence principle, and concepts, such as curved spacetime and the energy-momentum tensor. The course covers some basic applications and special cases, including the Newtonian limit, post-Newtonian expansions, the Schwarzschild solution, light deflection, and gravitational waves.
Literature
Suggested textbooks:
C. Misner, K, Thorne and J. Wheeler: Gravitation S. Carroll - Spacetime and Geometry: An Introduction to General Relativity R. Wald - General Relativity S. Weinberg - Gravitation and Cosmology
Performance assessment
Performance assessment information (valid until the course unit is held again)