252-0834-00L  Information Systems for Engineers

SemesterHerbstsemester 2023
DozierendeG. Fourny
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch



Lehrveranstaltungen

NummerTitelUmfangDozierende
252-0834-00 VInformation Systems for Engineers2 Std.
Fr10:15-12:00HG E 5 »
G. Fourny
252-0834-00 UInformation Systems for Engineers
Gruppeneinteilung erfolgt über myStudies.
1 Std.
Mo15:15-16:00HG D 3.1 »
15:15-16:00HG D 3.3 »
Fr16:15-17:00CAB G 52 »
16:15-17:00CAB G 56 »
16:15-17:00CAB G 57 »
16:15-17:00CHN F 42 »
16:15-17:00LFW C 4 »
G. Fourny

Katalogdaten

KurzbeschreibungThis course provides the basics of relational databases from the perspective of the user.

We will discover why tables are so incredibly powerful to express relations, learn the SQL query language, and how to make the most of it. The course also covers support for data cubes (analytics).
LernzielDo you want to be able to query your own data productively and efficiently in your future semester projects, bachelor's thesis, master thesis, or PhD thesis? Are you looking for something beyond the Python+Pandas hype? This courses teaches you how to do so as well as the dos and don'ts.

This lesson is complementary with Big Data for Engineers as they cover different time periods of database history and practices -- you can take them in any order, even though it might be more enjoyable to take this lecture first.

After visiting this course, you will be capable to:

1. Explain, in the big picture, how a relational database works and what it can do in your own words.

2. Explain the relational data model (tables, rows, attributes, primary keys, foreign keys), formally and informally, including the relational algebra operators (select, project, rename, all kinds of joins, division, cartesian product, union, intersection, etc).

3. Perform non-trivial reading SQL queries on existing relational databases, as well as insert new data, update and delete existing data.

4. Design new schemas to store data in accordance to the real world's constraints, such as relationship cardinality

5. Explain what bad design is and why it matters.

6. Adapt and improve an existing schema to make it more robust against anomalies, thanks to a very good theoretical knowledge of what is called "normal forms".

7. Understand how indices work (hash indices, B-trees), how they are implemented, and how to use them to make queries faster.

8. Access an existing relational database from a host language such as Java, using bridges such as JDBC.

9. Explain what data independence is all about and didn't age a bit since the 1970s.

10. Explain, in the big picture, how a relational database is physically implemented.

11. Know and deal with the natural syntax for relational data, CSV.

12. Explain the data cube model including slicing and dicing.

13. Store data cubes in a relational database.

14. Map cube queries to SQL.

15. Slice and dice cubes in a UI.

And of course, you will think that tables are the most wonderful object in the world.
InhaltUsing a relational database
=================
1. Introduction
2. The relational model
3. Data definition with SQL
4. The relational algebra
5. Queries with SQL

Taking a relational database to the next level
=================
6. Database design theory
7. Databases and host languages
8. Databases and host languages
9. Indices and optimization
10. Database architecture and storage

Analytics on top of a relational database
=================
12. Data cubes

Outlook
=================
13. Outlook
Literatur- Lecture material (slides).

- Book: "Database Systems: The Complete Book", H. Garcia-Molina, J.D. Ullman, J. Widom
(It is not required to buy the book, as the library has it)
Voraussetzungen / BesonderesThe lecture is hybrid, meaning you can attend with us in the lecture hall, or on Zoom, or watch the recordings on YouTube later. Exercise sessions are in presence.

For non-CS/DS students only, BSc and MSc
Elementary knowledge of set theory and logics
Knowledge as well as basic experience with a programming language such as Pascal, C, C++, Java, Haskell, Python
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
Medien und digitale Technologiengefördert
Problemlösunggefördert
Soziale KompetenzenKommunikationgefördert
Sensibilität für Vielfalt gefördert
Verhandlunggefördert
Persönliche KompetenzenKreatives Denkengefördert
Kritisches Denkengefördert
Integrität und Arbeitsethikgefördert

Leistungskontrolle

Information zur Leistungskontrolle (gültig bis die Lerneinheit neu gelesen wird)
Leistungskontrolle als Semesterkurs
Im Prüfungsblock fürBachelor-Studiengang Rechnergestützte Wissenschaften 2012; Ausgabe 13.12.2016 (Prüfungsblock G2)
Bachelor-Studiengang Rechnergestützte Wissenschaften 2016; Ausgabe 27.03.2018 (Prüfungsblock G2)
ECTS Kreditpunkte4 KP
PrüfendeG. Fourny
FormSessionsprüfung
PrüfungsspracheEnglisch
RepetitionDie Leistungskontrolle wird nur in der Session nach der Lerneinheit angeboten. Die Repetition ist nur nach erneuter Belegung möglich.
Prüfungsmodusschriftlich 180 Minuten
Zusatzinformation zum PrüfungsmodusWorking on the exercises is rewarded in the sense of ETH's continuous performance assessment with up to 0.25 bonus points. In principle, it is expected that students solve all exercises. In order to control this, the assignments will be collected in 3 weeks of the semester, announced in advance. Those who successfully solve ast least 2 of these 3 weeks of assignments get 0.25 extra points at the exam.
Hilfsmittel schriftlichGeneral dictionaries are allowed. This includes general English dictionaries (with word definitions) as well as general bilingual dictionaries (English <-> other language). Specialized dictionaries are not allowed. Dictionaries cannot be annotated by hand.
Digitale PrüfungDie Prüfung findet auf Geräten statt, die von der ETH Zürich zur Verfügung gestellt werden.
FernprüfungDas Ablegen als Fernprüfung ist nicht möglich.
Falls die Lerneinheit innerhalb eines Prüfungsblockes geprüft wird, werden die Kreditpunkte für den gesamten bestandenen Block erteilt.
Diese Angaben können noch zu Semesterbeginn aktualisiert werden; verbindlich sind die Angaben auf dem Prüfungsplan.

Lernmaterialien

 
HauptlinkInformation
AufzeichnungAll lectures are recorded and made available on YouTube
LiteraturDatabases, The Complete Book
Es werden nur die öffentlichen Lernmaterialien aufgeführt.

Gruppen

252-0834-00 UInformation Systems for Engineers
GruppenG-01
Fr16:15-17:00CAB G 52 »
G-02
Fr16:15-17:00CAB G 56 »
G-03
Fr16:15-17:00CAB G 57 »
G-04
Mo15:15-16:00HG D 3.1 »
G-05
Mo15:15-16:00HG D 3.3 »
G-06
Fr16:15-17:00CHN F 42 »
G-07
Fr16:15-17:00LFW C 4 »

Einschränkungen

Keine zusätzlichen Belegungseinschränkungen vorhanden.

Angeboten in

StudiengangBereichTyp
Computational Biology and Bioinformatics MasterTheorieWInformation
DAS in Data ScienceBig Data SystemsWInformation
Elektrotechnik und Informationstechnologie BachelorIngenieurswissenschaftliche WahlfächerWInformation
Informatik (Allgemeines Angebot)Informatik für NichtinformatikerZInformation
Integrated Building Systems MasterVertiefungsfächerWInformation
Maschineningenieurwissenschaften MasterEnergy, Flows and ProcessesWInformation
Maschineningenieurwissenschaften MasterMechanics, Materials, StructuresWInformation
Maschineningenieurwissenschaften MasterRobotics, Systems and ControlWInformation
Maschineningenieurwissenschaften MasterMicro & NanosystemsWInformation
Maschineningenieurwissenschaften MasterBioengineeringWInformation
Maschineningenieurwissenschaften MasterDesign, Computation, Product Development & ManufacturingWInformation
Physik BachelorWahlfächerWInformation
Physik MasterAllgemeine WahlfächerWInformation
Rechnergestützte Wissenschaften BachelorWahlfächerWInformation