227-0085-37L P&S: Data-Centric Architectures: Fundamentally Improving Performance and Energy
Semester | Autumn Semester 2023 |
Lecturers | |
Periodicity | every semester recurring course |
Course | Does not take place this semester. |
Language of instruction | English |
Comment | The course unit can only be taken once. Repeated enrollment in a later semester is not creditable. |
Courses
Number | Title | Hours | Lecturers | |
---|---|---|---|---|
227-0085-37 P | P&S: Data-Centric Architectures: Fundamentally Improving Performance and Energy
![]() Does not take place this semester. Für den Zugang zum Angebot und zur Einschreibung loggen Sie sich hier ein (mit Ihrem n.ETHZ account): https://psapp.ee.ethz.ch/ Bitte beachten Sie, dass die Seite jeweils erst zwei Wochen vor Semesterbeginn zugänglich ist und im Verlauf des Semesters wieder abgeschaltet wird. Die Einschreibung ist nur von Freitag vor Semesterbeginn bis zum ersten Freitagmittag im Semester möglich. To access the offer and to enroll for courses log in (with your n.ethz account): https://psapp.ee.ethz.ch/ Please note that the P&S-site is accessible no earlier than two weeks before the start of the semester until four weeks after the start of the semester. Enrollment is only possible from Friday before the start of the semester until noon of the first Friday in the semester. Time: to be arranged with each student Location: various | 3 hrs |
Catalogue data
Abstract | The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work. | |||||||||||||||||||||||||||||||||
Learning objective | Data movement between the memory units and the compute units of current computing systems is a major performance and energy bottleneck. From large-scale servers to mobile devices, data movement costs dominate computation costs in terms of both performance and energy consumption. For example, data movement between the main memory and the processing cores accounts for 62% of the total system energy in consumer applications. As a result, the data movement bottleneck is a huge burden that greatly limits the energy efficiency and performance of modern computing systems. This phenomenon is an undesired effect of the dichotomy between memory and the processor, which leads to the data movement bottleneck. Many modern and important workloads such as machine learning, computational biology, graph processing, databases, video analytics, and real-time data analytics suffer greatly from the data movement bottleneck. These workloads are exemplified by irregular memory accesses, relatively low data reuse, low cache line utilization, low arithmetic intensity (i.e., ratio of operations per accessed byte), and large datasets that greatly exceed the main memory size. The computation in these workloads cannot usually compensate for the data movement costs. In order to alleviate this data movement bottleneck, we need a paradigm shift from the traditional processor-centric design, where all computation takes place in the compute units, to a more data-centric design where processing elements are placed closer to or inside where the data resides. This paradigm of computing is known as Processing-in-Memory (PIM). This is your perfect P&S if you want to become familiar with the main PIM technologies, which represent "the next big thing" in Computer Architecture. You will work hands-on with the first real-world PIM architecture, will explore different PIM architecture designs for important workloads, and will develop tools to enable research of future PIM systems. Projects in this course span software and hardware as well as the software/hardware interface. You can potentially work on developing and optimizing new workloads for the first real-world PIM hardware or explore new PIM designs in simulators, or do something else that can forward our understanding of the PIM paradigm. Prerequisites of the course: - Digital Circuits AND Computer Engineering (or equivalent courses) - Familiarity with C/C++ programming. - Interest in future computer architectures and computing paradigms. - Interest in discovering why things do or do not work and solving problems - Interest in making systems efficient and usable The course is conducted in English. The course has two main parts: 1. Weekly lectures on processing-in-memory. 2. Hands-on project: Each student develops his/her own project. | |||||||||||||||||||||||||||||||||
Lecture notes | See: https://safari.ethz.ch/projects_and_seminars/ | |||||||||||||||||||||||||||||||||
Literature | Learning materials ============ Summary papers about recent research in PIM. - Link - Link - Link An analysis of a real-world processing in memory architecture. Link Repository: https://github.com/CMU-SAFARI/prim-benchmarks PIM Simulators. Ramulator-PIM: A version of Ramulator simulator for PIM. https://github.com/CMU-SAFARI/ramulator-pim DAMOV simulator. https://github.com/CMU-SAFARI/DAMOV UPMEM SDK documentation: The first real-world PIM architecture. https://sdk.upmem.com/2023.1.0/ An example recent study of 3D-stacked PIM for consumer workloads. Link An example recent study of lightweight PIM functionality on 3D-stacked memory: Link An example recent study of a PIM accelerator for graph processing. Link An example recent study of a Processing-using-Memory system. https://people.inf.ethz.ch/omutlu/pub/ambit-bulk-bitwise-dram_micro17.pdf https://people.inf.ethz.ch/omutlu/pub/SIMDRAM_asplos21.pdf | |||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites of the course: - Digital Circuits AND Computer Engineering (or equivalent courses). - Familiarity with C/C++ programming. - Interest in future computer architectures and computing paradigms. - Interest in discovering why things do or do not work and solving problems - Interest in making systems efficient and usable | |||||||||||||||||||||||||||||||||
Competencies![]() |
|
Performance assessment
Performance assessment information (valid until the course unit is held again) | |
![]() | |
ECTS credits | 3 credits |
Examiners | J. Gómez Luna |
Type | ungraded semester performance |
Language of examination | English |
Repetition | Repetition only possible after re-enrolling for the course unit. |
Learning materials
Literature | Summary paper about recent research in PIM |
Only public learning materials are listed. |
Groups
No information on groups available. |
Restrictions
General | ![]() |
Places | Limited number of places. Special selection procedure. |
Beginning of registration period | Registration possible from 15.09.2023 |
Priority | Registration for the course unit is only possible for the primary target group |
Primary target group | Electrical Engin. + Information Technology BSc (228000) |
Waiting list | until 06.10.2023 |
End of registration period | Registration only possible until 29.09.2023 |
Offered in
Programme | Section | Type | |
---|---|---|---|
Electrical Engineering and Information Technology Bachelor | Projects & Seminars | W | ![]() |