The course unit can only be taken once. Repeated enrollment in a later semester is not creditable.
Courses
Number
Title
Hours
Lecturers
227-0085-11 P
P&S: Deep Learning for Image Manipulation (DLIM)
Für den Zugang zum Angebot und zur Einschreibung loggen Sie sich hier ein (mit Ihrem n.ETHZ account): https://psapp.ee.ethz.ch/ Bitte beachten Sie, dass die Seite jeweils erst zwei Wochen vor Semesterbeginn zugänglich ist und im Verlauf des Semesters wieder abgeschaltet wird. Die Einschreibung ist nur von Freitag vor Semesterbeginn bis zum ersten Freitagmittag im Semester möglich.
To access the offer and to enroll for courses log in (with your n.ethz account): https://psapp.ee.ethz.ch/ Please note that the P&S-site is accessible no earlier than two weeks before the start of the semester until four weeks after the start of the semester. Enrollment is only possible from Friday before the start of the semester until noon of the first Friday in the semester.
The category of "Laboratory Courses, Projects, Seminars" includes courses and laboratories in various formats designed to impart practical knowledge and skills. Moreover, these classes encourage independent experimentation and design, allow for explorative learning and teach the methodology of project work.
Learning objective
Deep Learning – Image Manipulation – Image Enhancement – Image Restoration – Style Transfer – Image to Image Translation – Generative Models – TensorFlow/PyTorch – Projects
With the advent of deep learning tremendous advances were achieved in numerous areas from computer vision, computer graphics, and image processing. Using these techniques, an image can be automatically manipulated in various ways with high-quality results, often fooling the human observer. Deep learning based image processing and manipulation are being applied in a vast number of emerging technologies, including image enhancement in smartphone cameras, automated image editing, image content creation, graphics, and autonomous driving. This course focuses on the fundamentals of deep learning and image manipulation. Students will learn the tools to implement and develop deep learning solutions for a variety of image manipulation tasks. The course will end with a 4 weeks project where the students can target a specific application scenario.
The course will be taught in English.
Performance assessment
Performance assessment information (valid until the course unit is held again)