151-0254-00L  Environmental Aspects of Future Mobility

SemesterFrühjahrssemester 2024
DozierendeY. Wright, P. Dimopoulos Eggenschwiler
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch


KurzbeschreibungThe course describes and assesses the environmental performance of current and future mobility/transportation and transformation pathways towards sustainability. It focuses in particular on the future role of renewable synthetic chemical energy carriers from a technology point of view.
LernzielThe students understand the systemic nature of current and future mobili-ty/transportation systems and are able to elaborate solutions for the defossiliza-tion of the sector. At the end of the course they should be capable to assess alter-native technologies for the different subsectors for transport of people and freight including the “upstream” energy supply processes for different energy carriers.
InhaltMobility system structure, future demand trends for the various sectors (people, freight, off-road, marine, aviation) and appropriate energy carriers per application.
Basic characteristics of the currently most promising energy carrier concepts: Li-Ion Batteries, Hydrogen and synthetic fuels. Methods for producing renewable en-ergy carriers (electrolysis, methanation/synthesis of higher hydrocarbons etc.) and related infrastructure requirements.
For internal combustion engines (ICE), which will continue to be used in sectors difficult to electrify (marine, off-road, heavy-duty long-haul freight transport), dif-ferent combustion modes and their respective pollutant emission formation mechanisms are presented and in-cylinder emission minimization methods for conventional and renewable fuels are discussed. Exhaust gas aftertreatment for combustion engines and atmospheric immissions are finally presented in view of near-zero emission powertrain concepts. Basic environmental assessment of the introduced concepts.
Voraussetzungen / BesonderesDue to the wide range of material covered, this course requires basics of thermo-dynamics/cycles, turbulent flows as well as combustion concepts (laminar and tur-bulent premixed and non-premixed flames). Ideally a combination of 151-0293-00L "Combustion and Reactive Processes in Energy and Materials Technology", where background on reactive processes is provided, and, 151-0251-00L "Princi-ples, efficiency optimization and future applications of IC engines", where thermo-dynamic cycles and combustion modes in internal combustion engines are dis-cussed.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft