401-3090-25L  Mathematical Optimization Lab

SemesterFrühjahrssemester 2025
DozierendeM. Nägele
Periodizitätjährlich wiederkehrende Veranstaltung
LehrspracheEnglisch


KurzbeschreibungHands-on coding-based course on using mathematical optimization methods and software to solve a variety of optimization problems.
LernzielThe goal of this course is to learn how to put mathematical optimization theory into practice, by learning how to write code in python using modern mathematical optimization libraries. At the end of this course, students should be able to implement algorithms that can tackle a wide variety of mathematical optimization problems.
InhaltKey topics include:
- Modeling computational questions in terms of classical mathematical optimization problems, and implementing algorithms to solve these fast.
- Key techniques in practical optimization.
SkriptSee moodle page.
LiteraturNecessary materials will be provided on moodle.
Voraussetzungen / BesonderesSolid background in Linear Algebra. Preliminary knowledge of Linear Programming and Integer Programming is ideal but not a strict requirement. Prior attendance of more foundational mathematical optimization courses, like Linear & Combinatorial Optimization, Integer Programming, or Convex Optimization is a plus but not necessary.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
Problemlösunggeprüft
Projektmanagementgefördert
Soziale KompetenzenKommunikationgeprüft
Persönliche KompetenzenKreatives Denkengeprüft