Suchergebnis: Katalogdaten im Frühjahrssemester 2023

Biomedical Engineering Master Information
Vertiefungsfächer
Bioelectronics
Kernfächer der Vertiefung
Während des Studiums müssen mindestens 12 KP aus Kernfächern einer Vertiefung (Track) erreicht werden.
NummerTitelTypECTSUmfangDozierende
227-1032-00LNeuromorphic Engineering II
Information für UZH Studierende:
Die Lerneinheit kann nur an der ETH belegt werden. Die Belegung des Moduls INI405 ist an der UZH nicht möglich.

Beachten Sie die Einschreibungstermine an der ETH für UZH Studierende: Link
W6 KP5GT. Delbrück, G. Indiveri, S.‑C. Liu
KurzbeschreibungThis course teaches the basics of analog chip design and layout with an emphasis on neuromorphic circuits, which are introduced in the fall semester course "Neuromorphic Engineering I".
LernzielDesign of a neuromorphic circuit for implementation with CMOS technology.
InhaltThis course teaches the basics of analog chip design and layout with an emphasis on neuromorphic circuits, which are introduced in the autumn semester course "Neuromorphic Engineering I".

The principles of CMOS processing technology are presented. Using a set of inexpensive software tools for simulation, layout and verification, suitable for neuromorphic circuits, participants learn to simulate circuits on the transistor level and to make their layouts on the mask level. Important issues in the layout of neuromorphic circuits will be explained and illustrated with examples. In the latter part of the semester students simulate and layout a neuromorphic chip. Schematics of basic building blocks will be provided. The layout will then be fabricated and will be tested by students during the following fall semester.
LiteraturS.-C. Liu et al.: Analog VLSI Circuits and Principles; software documentation.
Voraussetzungen / BesonderesPrerequisites: Neuromorphic Engineering I strongly recommended
227-0427-10LModel-Based Estimation and Signal Analysis Information W6 KP4GH.‑A. Loeliger
KurzbeschreibungThe course develops a selection of topics pivoting around state space models, factor graphs, and pertinent algorithms for estimation, model fitting, and learning.
LernzielThe course develops a selection of topics pivoting around state space methods, factor graphs, and pertinent algorithms:
- hidden-Markov models
- factor graphs and message passing algorithms
- linear state space models, Kalman filtering, and recursive least squares
- Gibbs sampling, particle filter
- recursive local polynomial fitting for signal analysis
- parameter learning by expectation maximization
- linear-model fitting beyond least squares: sparsity, Lp-fitting and regularization, jumps
- binary, M-level, and half-plane constraints in control and communications
SkriptLecture notes
Voraussetzungen / BesonderesSolid mathematical foundations (especially in probability, estimation, and linear algebra) as provided by the course "Introduction to Estimation and Machine Learning".
227-0973-00LTranslational Neuromodeling Belegung eingeschränkt - Details anzeigen W8 KP3V + 2U + 1AK. Stephan
KurzbeschreibungThis course provides an introduction to Translational Neuromodeling (the development of computational assays of neuronal and cognitive processes) and their application to concrete clinical questions (Computational Psychiatry/Psychosomatics). It focuses on a generative modeling strategy and teaches (hierarchical) Bayesian models of neuroimaging data and behaviour, incl. exercises and project work.
LernzielTo obtain an understanding of the goals, concepts and methods of Translational Neuromodeling and Computational Psychiatry/Psychosomatics, particularly with regard to Bayesian models of neuroimaging (fMRI, EEG) and behavioural data.
InhaltThis course provides a systematic introduction to Translational Neuromodeling (the development of computational assays of neuronal and cognitive processes) and their application to concrete clinical questions (Computational Psychiatry/Psychosomatics). The first part of the course will introduce disease concepts from psychiatry and psychosomatics, their history, and clinical priority problems. The second part of the course concerns computational modeling of neuronal and cognitive processes for clinical applications. A particular focus is on Bayesian methods and generative models, for example, dynamic causal models for inferring neuronal processes from neuroimaging data, and hierarchical Bayesian models for inference on cognitive processes from behavioural data. The course discusses the mathematical and statistical principles behind these models, illustrates their application to various psychiatric diseases, and outlines a general research strategy based on generative models.

Lecture topics include:
1. Introduction to Translational Neuromodeling and Computational Psychiatry/Psychosomatics
2. Psychiatric nosology
3. Pathophysiology of psychiatric disease mechanisms
4. Principles of Bayesian inference and generative modeling
5. Variational Bayes (VB)
6. Bayesian model selection
7. Markov Chain Monte Carlo techniques (MCMC)
8. Bayesian frameworks for understanding psychiatric and psychosomatic diseases
9. Generative models of fMRI data
10. Generative models of electrophysiological data
11. Generative models of behavioural data
12. Computational concepts of schizophrenia and depression
13. Generative embedding: Model-based predictions about individual patients

Practical exercises include mathematical derivations and the implementation of specific models and inference methods. In additional project work, students are required to either develop a novel generative model (and demonstrate its properties in simulations) or devise novel applications of an existing model to empirical data in order to address a clinical question. Group work (up to 3 students) is required.

Please note that some of the exercises involve the use of open source software in Matlab.
LiteraturSee TNU website:
https://www.tnu.ethz.ch/en/teaching
Voraussetzungen / BesonderesGood knowledge of principles of statistics, good programming skills (the majority of the open source software tools used is in MATLAB; for project work, Julia can also be used)
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggefördert
Medien und digitale Technologiengeprüft
Problemlösunggefördert
Projektmanagementgefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Menschenführung und Verantwortunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengeprüft
Kritisches Denkengefördert
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
  •  Seite  1  von  1