Search result: Catalogue data in Autumn Semester 2023
Biochemistry - Chemical Biology Master ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
529-0733-02L | Chemical Biology and Synthetic Biochemistry | O | 6 credits | 3G | K. Lang, M. Fottner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Overview of modern chemical biology and synthetic biochemistry techniques, focussed on protein modification and labeling and on methods to endow proteins with novel functionalities. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | After taking this course, students should be capable of the following: A) Recall different possibilities for modifying proteins in vitro and in vivo and their applications in a biological context, B) Understand the chemical and biochemical consequences of modifications and assess the different reaction possibilities in the context of in vivo - in vitro, C) Critically analyze and assess current chemical biology articles D) Question the approaches learned and apply them to new biological problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | principles of protein labeling and protein modification (fluorescent proteins, enzyme-mediated labeling, bioorthogonal chemistries) advanced genetic code expansion methods (amber suppression, orthogonal ribosomes, unnatural base pairs, genome engineering and genome editing) directed evolution and protein engineering chemical biology of ubiquitin and targeted protein degradation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script will not be handed out. Handouts to the lecture will be provided through moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Citations from the original literature relevant to the individual lectures will be assigned during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Knowledge provided in the bachelor lectures 'Nucleic Acids and Carbohydrates' and 'Proteins and Lipids' is assumed for this lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0240-00L | Chemical Biology - Peptides | O | 6 credits | 3G | H. Wennemers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | An advanced course on the synthesis, properties and function of peptides in chemistry and biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowledge of the synthesis, properties and function of peptides in chemistry and biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Advanced peptide synthesis, conformational properties, combinatorial chemistry, therapeutic peptides, peptide based materials, peptides in nanotechnology, peptides in asymmetric catalysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Citations from the original literature relevant to the individual lectures will be assigned weekly. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Norbert Sewald, Hans Dieter Jakubke "Peptides: Chemistry and Biology", 1st edition, Wiley VCH, 2002. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0241-10L | Selectivity in Organic Synthesis | O | 6 credits | 3G | J. W. Bode | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Fundamentals of selective organic reactions, including current and historical examples of enantioselectivity, regioselectivity, chemoselectivity. Further aspects include recent developments in catalysis, strategies and tools for selective organic synthesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding and explaining the origin of selectivity in organic synthesis and the application of selective organic reactions to the construction of complex organic and biological molecules. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fundamental concepts and recent advances for the selective synthesis of complex organic molecules, including natural products, pharmaceuticals, and biological molecules. Key concepts include the development of enantioselective and regioselective catalysts, the identification of new reaction mechanisms and pathways, and technological advances for facilitating the synthesis of organic molecules. Analysis of key primarily literature including identification of trends, key precendents, and emerging topics will be emphasized. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | will be provided in class and online | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Suggesting Textbooks Anslyn and Dougherty, Modern Physical Organic Chemistry, 1st Ed., University Science Books, 2006. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() Compensatory courses can be used to compensate for core subjects that have been failed twice. The assignment of the corresponding course units to the regulatory category "core subjects and compensatory courses" in the transcript of records is only made upon application by the student to the study administration office of the degree programme. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0615-01L | Biochemical and Polymer Reaction Engineering | W | 6 credits | 3G | P. Arosio | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Polymerization reactions and processes. Homogeneous and heterogeneous (emulsion) kinetics of free radical polymerization. Post treatment of polymer colloids. Bioprocesses for the production of molecules and therapeutic proteins. Kinetics and design of aggregation processes of macromolecules and proteins. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The aim of the course is to learn how to design polymerization reactors and bioreactors to produce polymers and proteins with the specific product qualities that are required by different applications in chemical, pharmaceutical and food industry. This activity includes the post-treatment of polymer latexes, the downstream processing of proteins and the analysis of their colloidal behavior. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | We will cover the fundamental processes and the operation units involved in the production of polymeric materials and proteins. In particular, the following topics are discussed: Overview on the different polymerization processes. Kinetics of free-radical polymerization and use of population balance models. Production of polymers with controlled characteristics in terms of molecular weight distribution. Kinetics and control of emulsion polymerization. Surfactants and colloidal stability. Aggregation kinetics and aggregate structure in conditions of diffusion and reaction limited aggregation. Modeling and design of colloid aggregation processes. Physico-chemical characterization of proteins and description of enzymatic reactions. Operation units in bioprocessing: upstream, reactor design and downstream. Industrial production of therapeutic proteins. Characterization and engineering of protein aggregation. Protein aggregation in biology and in biotechnology as functional materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Scripts are available on the web page of the Arosio-group: http://www.arosiogroup.ethz.ch/education.html Additional handout of slides will be provided during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | R.J. Hunter, Foundations of Colloid Science, Oxford University Press, 2nd edition, 2001 D. Ramkrishna, Population Balances, Academic Press, 2000 H.W. Blanch, D. S. Clark, Biochemical Engineering, CRC Press, 1995 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0243-01L | Transition Metal Catalysis: From Mechanisms to Applications ![]() | W | 6 credits | 3G | B. Morandi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Detailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding and critical evaluation of current research in transition metal catalysis. Design of mechanistic experiments to elucidate reaction mechanisms. Synthetic relevance of transition metal catalysis. Students will also learn about writing an original research proposal during a workshop. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Detailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint. Synthetic applications of these reactions. Introduction and application of tools for the elucidation of mechanisms. Selected examples of topics include: C-H activation, C-O activation, C-C activation, redox active ligands, main group redox catalysis, bimetallic catalysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture slides will be provided online. A Handout summarizing important concepts in organometallic and physical organic chemistry will also be provided. Useful references and handouts will also be provided during the workshop. Slides will be uploaded 1-2 days before each lecture on http://morandi.ethz.ch/education.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Primary literature and review articles will be cited during the course. The following textbooks can provide useful support for the course: - Anslyn and Dougherty, Modern Physical Organic Chemistry, 1st Ed., University Science Books. - Crabtree R., The Organometallic Chemistry of the Transition Metals, John Wiley & Sons, Inc. - Hartwig J., Organotransition Metal Chemistry: From Bonding to Catalysis, University Science Books. - J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke, Principles and Applications of Organotransition Metal Chemistry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Required level: Courses in organic and physical chemistry (kinetics in particular) of the first and second year as well as ACI and III | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
|
Page 1 of 1