Search result: Catalogue data in Autumn Semester 2024
Chemistry Master ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() Offered during spring semester | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
529-0233-01L | Organic Synthesis: Methods and Strategies ![]() | W+ | 6 credits | 3G | E. M. Carreira | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The complex relation between structural analysis, methods leading to desired transformations, and insight into reaction mechanisms is exemplified. Relations between retrosynthetic analysis of target structures, synthetic methods and their combination in a synthetic strategy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Extension and deepening of the knowledge in organic synthesis and the principles of structure and reactivity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Concepts of the planning of organic synthesis (strategy and tactics), retrosynthetic analysis. Structure-reactivity relation in the context of the synthesis of complex molecules. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | K. C. Nicolaou, E. J. Sorensen, Classics in Total Synthesis, Wiley-VCH 1996. K. C. Nicolaou, S. A. Snyder, Classics in Total Synthesis II, Wiley-VCH 2003. K. C. Nicolaou, J. Chen, Classics in Total Synthesis III, Wiley-VCH 2011. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | OC I-IV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0241-10L | Selectivity in Organic Synthesis | W+ | 6 credits | 3G | J. W. Bode | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Fundamentals of selective organic reactions, including current and historical examples of enantioselectivity, regioselectivity, chemoselectivity. Further aspects include recent developments in catalysis, strategies and tools for selective organic synthesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding and explaining the origin of selectivity in organic synthesis and the application of selective organic reactions to the construction of complex organic and biological molecules. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fundamental concepts and recent advances for the selective synthesis of complex organic molecules, including natural products, pharmaceuticals, and biological molecules. Key concepts include the development of enantioselective and regioselective catalysts, the identification of new reaction mechanisms and pathways, and technological advances for facilitating the synthesis of organic molecules. Analysis of key primarily literature including identification of trends, key precendents, and emerging topics will be emphasized. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | will be provided in class and online | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Suggesting Textbooks Anslyn and Dougherty, Modern Physical Organic Chemistry, 1st Ed., University Science Books, 2006. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0433-01L | Advanced Physical Chemistry: Statistical Thermodynamics | W+ | 6 credits | 3G | R. Riek, J. Richardson | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Basics of statistical mechanics and thermodynamics of classical and quantum systems. Concept of ensembles, microcanonical and canonical ensembles, ergodic theorem. Molecular and canonical partition functions and their connection with classical thermodynamics. Quantum statistics. Translational, rotational, vibrational, electronic and nuclear spin partition functions of gases. Determination of the equilibrium constants and (transition-state theory) rates of gas phase reactions. Description of ideal gases and ideal crystals. Lattice models, mixing entropy of polymers, and entropic elasticity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | See homepage of the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | See homepage of the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Chemical Thermodynamics, Reaction Kinetics, Molecular Quantum Mechanics and Spectroscopy; Mathematical Foundations (Analysis, Combinatorial Relations, Integral and Differential Calculus) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0200-10L | Research Project I ![]() | W | 13 credits | 16A | Supervisors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | In a research project students extend their knowledge in a particular field, get acquainted with the scientific way of working, and learn to work on an actual research topic. Research projects are carried out in a core or optional subject area as chosen by the student. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students are accustomed to scientific work and they get to know one specific research field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0201-10L | Research Project II ![]() | W | 13 credits | 16A | Supervisors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | In a research project students extend their knowledge in a particular field, get acquainted with the scientific way of working, and learn to work on an actual research topic. Research projects are carried out in a core or optional subject area as chosen by the student. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students are accustomed to scientific work and they get to know one specific research field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0202-00L | Industry Internship ![]() | W | 13 credits | Supervisors | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Internship in industry with a minimum duration of 7 weeks | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The aim of the internship is to make students acquainted with industrial work environments. During this time, they will have the opportunity to get involved in current projects of the host institution. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0739-10L | Biological Chemistry A: Technologies for Directed Evolution of Enzymes ![]() ![]() Advanced laboratory course or internship depending on lab course Biological Chemistry B Candidates must inquire with P. Kast no later than September 1st whether course will take place (no self-enrollment) | W | 13 credits | 16P | P. A. Kast | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | During this semester course, methodologies will be taught for biological-chemical enzyme evolution experiments using molecular genetic mutation technologies and in vivo selection in recombinant bacterial strains. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | All technologies used for the experiments will be explained to the students in practice with the goal that they will be able to independently apply them for the course project and in future research endeavors. After the course, an individual report about the results obtained has to be prepared. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This class conducts and supports experiments for a specifically designed genuine research project. We will carry out biological-chemical enzyme evolution experiments using molecular genetic mutation technologies and in vivo selection in recombinant bacterial strains. The relevant technologies will be taught to the students, such as the preparation of competent cells, production and isolation of DNA fragments, transformation of gene libraries, and DNA sequencing. The course participants will generate a variety of different variants of a chorismate mutase. Individual enzyme catalysts will be purified and subsequently characterized using several different spectroscopic methods. The detailed chemical-physical analyses include determination of the enzymes' kinetic parameters, their molecular mass, and the integrity of the protein structure. The students will present the results obtained from their individual evolution experiments at the end of the semester. We expect that during this lab course we will not only generate novel enzymes, but also gain new mechanistic insights into the investigated catalyst. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The necessary documents and protocols will be distributed to the participants during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | General literature to "Directed Evolution" and chorismate mutases, e.g.: – Taylor, S. V., P. Kast & D. Hilvert. 2001. Investigating and engineering enzymes by genetic selection. Angew. Chem. Int. Ed. 40: 3310-3335. – Jäckel, C., P. Kast & D. Hilvert. 2008. Protein design by directed evolution. Annu. Rev. Biophys. 37: 153-173. – Roderer, K. & P. Kast. 2009. Evolutionary cycles for pericyclic reactions – Or why we keep mutating mutases. Chimia 63: 313-317. Further literature will be indicated in the distributed script. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | - This laboratory course will involve experiments that require a tight schedule and (sometimes) long (!) working days. - The projects of this course are tightly linked to the ones of the Biology BSc course "529-0739-01 Biological Chemistry B: New Enzymes from Directed Evolution Experiments", which takes place as a block course during the month of November. There will be joint lectures for the participants of both courses during that time. The teaching language is English. - The number of participants for the laboratory class is limited. It is mandatory to sign up for the course directly with P. Kast no later than September 1, prior to the start of the fall semester. Until then it will be decided whether the course will take place. - A valid registration is considered a commitment for attendance of the entire semester course, as involved material orders and experimental preparations are necessary and, once the class has started, the flow of the experiments must not be interrupted by individual absences. In case of an emergency, please immediately notify P. Kast. - For more information, see also http://www.kast.ethz.ch/teaching.html or contact P. Kast directly (HCI F 333, Tel. 044 632 29 08, kast@org.chem.ethz.ch). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0500-10L | Master's Thesis ![]() Only students who fulfill the following criteria are allowed to begin with their Master's thesis: a. successful completion of the Bachelor's programme; b. fulfilling of any additional requirements necessary to gain admission to the Master's programme. Duration of the Master's Thesis 20 weeks. | O | 25 credits | 54D | Supervisors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | In the Master's thesis students prove their ability to independent, structured and scientific working. The Master's thesis is usually carried out in a core or optional subject area as chosen by the student. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | In the Master's Thesis students prove their ability to independent, structured and scientific working. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() Students are free to choose from a range of D-CHAB chemistry courses appropriate to their level of study (please note admission requirements). In case of doubt, contact the student administration. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0141-00L | Physical Methods for Inorganic Chemistry | W | 6 credits | 3G | M. D. Wörle, D. Günther, J. Koch, R. Verel | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction into the important methods for structural analysis (solid state NMR), crystal structure analysis and surface analysis techniques and their applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowledge in solid state NMR, crystal structure analysis and surface analytical techniques relevant for inorganic materials | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This lecture course consists of three parts 1) Solid-state NMR 2) Surface and direct solid analysis 3) Crystal structure anaylsis. Most important fundamentals of the individual methods will be presented and details will be explained on most relevant inorganic applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Will be given during the lectures | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0243-01L | Transition Metal Catalysis: From Mechanisms to Applications ![]() | W | 6 credits | 3G | B. Morandi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Detailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding and critical evaluation of current research in transition metal catalysis. Design of mechanistic experiments to elucidate reaction mechanisms. Synthetic relevance of transition metal catalysis. Students will also learn about writing an original research proposal during a workshop. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Detailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint. Synthetic applications of these reactions. Introduction and application of tools for the elucidation of mechanisms. Selected examples of topics include: C-H activation, C-O activation, C-C activation, redox active ligands, main group redox catalysis, bimetallic catalysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture slides will be provided online. A Handout summarizing important concepts in organometallic and physical organic chemistry will also be provided. Useful references and handouts will also be provided during the workshop. Slides will be uploaded 1-2 days before each lecture on http://morandi.ethz.ch/education.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Primary literature and review articles will be cited during the course. The following textbooks can provide useful support for the course: - Anslyn and Dougherty, Modern Physical Organic Chemistry, 1st Ed., University Science Books. - Crabtree R., The Organometallic Chemistry of the Transition Metals, John Wiley & Sons, Inc. - Hartwig J., Organotransition Metal Chemistry: From Bonding to Catalysis, University Science Books. - J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke, Principles and Applications of Organotransition Metal Chemistry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Required level: Courses in organic and physical chemistry (kinetics in particular) of the first and second year as well as ACI and III | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0233-01L | Organic Synthesis: Methods and Strategies ![]() | W | 6 credits | 3G | E. M. Carreira | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The complex relation between structural analysis, methods leading to desired transformations, and insight into reaction mechanisms is exemplified. Relations between retrosynthetic analysis of target structures, synthetic methods and their combination in a synthetic strategy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Extension and deepening of the knowledge in organic synthesis and the principles of structure and reactivity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Concepts of the planning of organic synthesis (strategy and tactics), retrosynthetic analysis. Structure-reactivity relation in the context of the synthesis of complex molecules. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | K. C. Nicolaou, E. J. Sorensen, Classics in Total Synthesis, Wiley-VCH 1996. K. C. Nicolaou, S. A. Snyder, Classics in Total Synthesis II, Wiley-VCH 2003. K. C. Nicolaou, J. Chen, Classics in Total Synthesis III, Wiley-VCH 2011. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | OC I-IV | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0241-10L | Selectivity in Organic Synthesis | W | 6 credits | 3G | J. W. Bode | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Fundamentals of selective organic reactions, including current and historical examples of enantioselectivity, regioselectivity, chemoselectivity. Further aspects include recent developments in catalysis, strategies and tools for selective organic synthesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding and explaining the origin of selectivity in organic synthesis and the application of selective organic reactions to the construction of complex organic and biological molecules. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fundamental concepts and recent advances for the selective synthesis of complex organic molecules, including natural products, pharmaceuticals, and biological molecules. Key concepts include the development of enantioselective and regioselective catalysts, the identification of new reaction mechanisms and pathways, and technological advances for facilitating the synthesis of organic molecules. Analysis of key primarily literature including identification of trends, key precendents, and emerging topics will be emphasized. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | will be provided in class and online | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Suggesting Textbooks Anslyn and Dougherty, Modern Physical Organic Chemistry, 1st Ed., University Science Books, 2006. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0240-00L | Chemical Biology - Peptides | W | 6 credits | 3G | H. Wennemers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | An advanced course on the synthesis, properties and function of peptides in chemistry and biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowledge of the synthesis, properties and function of peptides in chemistry and biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Advanced peptide synthesis, conformational properties, combinatorial chemistry, therapeutic peptides, peptide based materials, peptides in nanotechnology, peptides in asymmetric catalysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Citations from the original literature relevant to the individual lectures will be assigned weekly. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Norbert Sewald, Hans Dieter Jakubke "Peptides: Chemistry and Biology", 1st edition, Wiley VCH, 2002. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0731-00L | Nucleic Acids and Carbohydrates Note for BSc Biology students: Only one of the two concept courses 529-0731-00 Nucleic Acids and Carbohydrates (autumn semester) or 529-0732-00 Proteins and Lipids (spring semester) can be counted for the Bachelor's degree. | W | 6 credits | 3G | M. Frei, P. A. Kast, K. Lang, B. M. Lewandowski, H. Wennemers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | No script; illustrations from the original literature relevant to the individual lectures will be provided weekly (typically as handouts downloadable from the Moodle server). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Mainly based on original literature, a detailed list will be distributed during the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0433-01L | Advanced Physical Chemistry: Statistical Thermodynamics | W | 6 credits | 3G | R. Riek, J. Richardson | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to statistical mechanics and thermodynamics. Prediction of thermodynamic and kinetic properties from molecular data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Basics of statistical mechanics and thermodynamics of classical and quantum systems. Concept of ensembles, microcanonical and canonical ensembles, ergodic theorem. Molecular and canonical partition functions and their connection with classical thermodynamics. Quantum statistics. Translational, rotational, vibrational, electronic and nuclear spin partition functions of gases. Determination of the equilibrium constants and (transition-state theory) rates of gas phase reactions. Description of ideal gases and ideal crystals. Lattice models, mixing entropy of polymers, and entropic elasticity. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | See homepage of the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | See homepage of the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Chemical Thermodynamics, Reaction Kinetics, Molecular Quantum Mechanics and Spectroscopy; Mathematical Foundations (Analysis, Combinatorial Relations, Integral and Differential Calculus) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0027-00L | Advanced Magnetic Resonance - Solid State NMR ![]() Does not take place this semester. | W | 6 credits | 3G | M. Ernst | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course is for advanced students and introduces and discusses the theoretical foundations of solid-state nuclear magnetic resonance (NMR). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The aim of the course is to familiarize the students with the basic concepts of modern high-resolution solid-state NMR. Starting from the mathematical description of spin dynamics, important building blocks for multi-dimensional experiments are discussed to allow students a better understanding of modern solid-state NMR experiments. Particular emphasis is given to achiving high spectral resolution. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The basic principles of NMR in solids will be introduced. After the discussion of basic tools to describe NMR experiments, basic methods and experiments will be discussed, e.g., magic-angle spinning, cross polarization, decoupling, and recoupling experiments. Such basic building blocks allow a tailoring of the effective Hamiltonian to the needs of the experiment. These basic building blocks can then be combined in different ways to obtain spectra that contain the desired information. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script which covers the topics will be distributed in the lecture and will be accessible through the web page http://www.ssnmr.ethz.ch/education/ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisite: A basic knowledge of NMR, e.g. as covered in the Lecture Physical Chemistry IV, or the book by Malcolm Levitt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0130-00L | Advanced Magnetic Resonance - DNP Instrumentation and Applications Does not take place this semester. | W | 6 credits | 3G | A. Barnes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course is for advanced students and covers selected topics from magnetic resonance spectroscopy. The following topics will be covered: •DNP theory & instrumentation •Microwave theory & technology •Biological applications of solid-state DNP | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The course aims at enabling students to understand the key theoretical points of DNP and to design DNP experiments. Students will be familiarized with the structure of the state-of-the-art DNP instrumentation. Students will be also informed about the technological challenges towards the development of advanced instrumentation for the future DNP experiments. A special focus will be given in the technology of microwave source. Furthermore, students will become familiar with pulse sequences used in biomolecular applications and understand how they are constructed. Students will be able to identify the strengths and weaknesses of biomolecular DNP and how to design DNP experiments for biological applications including sample preparation and choice of NMR experiment and related parameters. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course is separated in three well separated parts. The first part will cover DNP concept and mechanisms, while a special focus will be given in DNP instrumentation, such as MAS technology, and the NMR probe. Several details will be also presented on the development high field NMR magnet. The second part of the course is dedicated to the microwave theory and technology. This part starts with an introduction of the two different types of microwave sources, such as the solid-state devices and vacuum tubes, which are extensively used in DNP and EPR spectroscopy. A special focus will be given to the vacuum tube’s theory and technology. In this context, the Maxwell equations and the propagation of the transverse electric and transverse magnetic modes in circular waveguides will be taught. This material will be the basis for understanding the resonance theory and the fundamentals of the microwave’s generation in vacuum tubes. Based on the theoretical background gained in the previous lectures it will be possible to understand the operation principle of the slow wave devices, such as Klystron, Traveling Wave Tube (TWT), Backward Wave Oscillator (BWO) and Surface Wave Structure (SWS), as well as, the fast wave devices, such as gyro-devices, Free Electron Laser, etc. Finally, some details on the structure of a real DNP gyrotron will be presented. The third part of the course will cover CPMAS and homonuclear and heteronuclear recoupling schemes and their use in correlation spectroscopy for structure and molecular interaction determination. Sample preparation with particular emphasis of glassing agents and their relationship to DNP enhancements will be discussed. Resolution under DNP including a discussion about inhomogeneous and homogeneous broadening at cryogenic temperatures. Methods for circumventing low resolution at cryogenic temperatures will be discussed including site specific isotope labeling, bio-orthogonal labeling and site specific radical labeling/targeting. Concepts around the role of spin diffusion in DNP, direct and indirect DNP, paramagnetic broadening, longitudinal T1 and methyl quenching in biological NMR will also be discussed. These concepts will then be tied together through discussions of biomolecular applications of solid-state DNP including membrane proteins, in-cell DNP and viruses. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script which covers the topics will be accessible through the course Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisite: A basic knowledge of Magnetic Resonance, e.g. as covered in the Lecture Physical Chemistry IV, or the book "Spin Dynamics" by Malcolm Levitt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0026-00L | Advanced Magnetic Resonance - Biological Magnetic Resonance | W | 6 credits | 3G | G. Jeschke, R. Riek | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course is for advanced students and covers selected topics from magnetic resonance spectroscopy. It is concerned with inference of structure and dynamics of proteins and their complexes from data obtained by EPR and liquid-state NMR experiments. The special focus is on multi-state and ensemble modelling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course enables students to design experimental strategies for characterization of structure and dynamics of proteins whose flexibility is relevant for their function. Students understand the spin dynamics that encodes sidechain and backbone motion as well as distance information into signals measured by magnetic resonance experiments. They learn to solve the inverse problem of inferring dynamics parameters and distances from the experimental results. They acquire skills in modelling protein ensemble structure from constraints derived by analyzing magnetic resonance data. Students are aware of the complications introduced by the use of spin labels in such experiments and learn how to include such labels in modelling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | • Nitroxide spin labels, their interaction with the environment, and influence of their dynamics on EPR line shapes • Contributions to electron spin decoherence and ways to improve resolution in pulsed EPR • Measurement of electron-electron dipole-dipole interaction and conversion of the primary data to distance distributions • Modelling of spin labels by rotamer libraries • Ensemble modelling with distance distributions • Liquid-state NMR experiments for assessing protein structure and dynamics • Assignment of NMR signals for proteins • Theory of the nuclear Overhauser effect (NOE) • Ensemble modelling with exact NOE constraints • Multistate structure calculation and analysis • Further constraints on protein structure and dynamics from NMR experiments | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script, which covers the topics, will be accessible through the course Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | A basic knowledge of magnetic resonance, e.g. as covered in the lecture course Physical Chemistry IV or in the book "Spin Dynamics" by Malcolm Levitt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0043-01L | Analytical Strategy | W | 6 credits | 3G | R. Zenobi, S. Giannoukos, D. Günther | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Problem-oriented development of analytical strategies and solutions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Ability to create solutions for particular analytical problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Individual development of strategies for the optimal application of chemical, biochemical, and physico-chemical methods in analytical chemistry solving predefined problems. Experts from industry and administration present particular problems in their field of activity. Principles of sampling. Design and application of microanalytical systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Copies of problem sets and solutions will be distributed free fo charge | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: 529-0051-00 "Analytical Chemistry I (3. Semester)" 529-0058-00 "Analytical Chemistry II (4. Semester)" (or equivalent) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0733-02L | Chemical Biology and Synthetic Biochemistry | W | 6 credits | 3G | K. Lang, M. Fottner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Overview of modern chemical biology and synthetic biochemistry techniques, focussed on protein modification and labeling and on methods to endow proteins with novel functionalities. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | After taking this course, students should be capable of the following: A) Recall different possibilities for modifying proteins in vitro and in vivo and their applications in a biological context, B) Understand the chemical and biochemical consequences of modifications and assess the different reaction possibilities in the context of in vivo - in vitro, C) Critically analyze and assess current chemical biology articles D) Question the approaches learned and apply them to new biological problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | principles of protein labeling and protein modification (fluorescent proteins, enzyme-mediated labeling, bioorthogonal chemistries) advanced genetic code expansion methods (amber suppression, orthogonal ribosomes, unnatural base pairs, genome engineering and genome editing) directed evolution and protein engineering chemical biology of ubiquitin and targeted protein degradation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script will not be handed out. Handouts to the lecture will be provided through moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Citations from the original literature relevant to the individual lectures will be assigned during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Knowledge provided in the bachelor lectures 'Nucleic Acids and Carbohydrates' and 'Proteins and Lipids' is assumed for this lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
|
Page 1 of 3
All