Suchergebnis: Katalogdaten im Herbstsemester 2024

Science, Technology, and Policy Master Information
Naturwissenschaftlich-technische Ergänzung
Gesundheitswissenschaften und -technologie
NummerTitelTypECTSUmfangDozierende
376-0021-00LMaterials and Mechanics in MedicineW4 KP3GM. Zenobi-Wong, J. G. Snedeker
KurzbeschreibungUnderstanding of physical and technical principles in biomechanics, biomaterials, and tissue engineering as well as a historical perspective. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.
LernzielUnderstanding of physical and technical principles in biomechanics, biomaterials, tissue engineering. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice.
InhaltBiomaterials, Tissue Engineering, Tissue Biomechanics, Implants.
Skriptcourse website on Moodle
LiteraturIntroduction to Biomedical Engineering, 3rd Edition 2011,
Autor: John Enderle, Joseph Bronzino, ISBN 9780123749796
Academic Press
376-1103-00LFrontiers in NanotechnologyW4 KP4VV. Vogel, weitere Dozierende
KurzbeschreibungMany disciplines are meeting at the nanoscale, from physics, chemistry to engineering, from the life sciences to medicine. The course will prepare students to communicate more effectively across disciplinary boundaries, and will provide them with deep insights into the various frontiers.
LernzielBuilding upon advanced technologies to create, visualize, analyze and manipulate nano-structures, as well as to probe their nano-chemistry, nano-mechanics and other properties within manmade and living systems, many exciting discoveries are currently made. They change the way we do science and result in so many new technologies.

The goal of the course is to give Master and Graduate students from all interested departments an overview of what nanotechnology is all about, from analytical techniques to nanosystems, from physics to biology. Students will start to appreciate the extent to which scientific communities are meeting at the nanoscale. They will learn about the specific challenges and what is currently “sizzling” in the respective fields, and learn the vocabulary that is necessary to communicate effectively across departmental boundaries.

Each lecturer will first give an overview of the state-of-the art in his/her field, and then describe the research highlights in his/her own research group. While preparing their Final Projects and discussing them in front of the class, the students will deepen their understanding of how to apply a range of new technologies to solve specific scientific problems and technical challenges. Exposure to the different frontiers will also improve their ability to conduct effective nanoscale research, recognize the broader significance of their work and to start collaborations.
InhaltStarting with the fabrication and analysis of nanoparticles and nanostructured materials that enable a variety of scientific and technical applications, we will transition to discussing biological nanosystems, how they work and what bioinspired engineering principles can be derived, to finally discussing biomedical applications and potential health risk issues. Scientific aspects as well as the many of the emerging technologies will be covered that start impacting so many aspects of our lives. This includes new phenomena in physics, advanced materials, novel technologies and new methods to address major medical challenges.
SkriptAll the enrolled students will get access to a password protected website where they can find pdf files of the lecture notes, and typically 1-2 journal articles per lecture that cover selected topics.
376-1714-00LBiocompatible MaterialsW4 KP3VK. Maniura, M. Rottmar, M. Zenobi-Wong
KurzbeschreibungIntroduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced.
LernzielThe course covers the follwing topics:
1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials.
2. The concept of biocompatibility.
3. Introduction into methodology used in biomaterials research and application.
4. Introduction to different material classes in use for medical applications.
InhaltIntroduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed.
A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics.
SkriptHandouts are deposited online (moodle).
LiteraturLiterature:
- Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013
- Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011

(available online via ETH library)

Handouts and references therin.
376-0300-00LEssentials in Translational Science Belegung eingeschränkt - Details anzeigen W3 KP2GJ. Goldhahn, N. K. Brasier, D. Schaffarczyk
KurzbeschreibungTranslational science is a cross disciplinary scientific research that is motivated by the need for practical applications that help people (e.g. Medicines). The course should help to clarify basics of translational science, illustrate successful applications and enable students to integrate key features into their future projects.
LernzielAfter completing this course, students will be able to understand:
Principles of translational science including medical device development, intellectual property, regulatory environment and project management
Students should be able to apply this knowledge in drug development programs in Pharma, Biotech or their own spin-off.
InhaltWhat is translational science and what is it not Including:
How to identify need?
How to choose the appropriate research type and methodology
How to measure success?
How are medical devices developed?
How to handle IP in the development process?
How does the regulatory environment impact innovation?
How to manage complex development projects?
Positive and negative examples will be illustrated by distinguished guest speakers.
LiteraturPrinciples of Biomedical Sciences and Industry
Translating Ideas into Treatments
https://doi.org/10.1002/9783527824014
Voraussetzungen / Besonderes4x online input lecture followed by case preparation and symposium
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengefördert
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
Problemlösunggeprüft
Projektmanagementgefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Kundenorientierunggefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengefördert
Kritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
752-6105-00LEpidemiology and PreventionW3 KP2VM. Puhan, R. Heusser
KurzbeschreibungThe module „Epidemiology and prevention“ describes the process of scientific discovery from the detection of a disease and its causes, to the development and evaluation of preventive and treatment interventions and to improved population health.
LernzielThe overall goal of the course is to introduce students to epidemiological thinking and methods, which are criticial pillars for medical and public health research. Students will also become aware on how epidemiological facts are used in prevention, practice and politics.
InhaltThe module „Epidemiology and prevention“ follows an overall framework that describes the course of scientific discovery from the detection of a disease to the development of prevention and treatment interventions and their evaluation in clinical trials and real world settings. We will discuss study designs in the context of existing knowledge and the type of evidence needed to advance knowledge. Examples from nutrition, chronic and infectious diseases will be used in order to show the underlying concepts and methods.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
Problemlösunggefördert
Projektmanagementgefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Persönliche KompetenzenKreatives Denkengefördert
Kritisches Denkengeprüft
752-6151-00LPublic Health ConceptsW3 KP2VR. Heusser
KurzbeschreibungThe module "public health concepts" offers an introduction to key principles of public health. Students get acquainted with the concepts and methods of epidemiology. Students also learn to use epidemiological data for prevention and health promotion purposes. Public health concepts and intervention strategies are presented, using examples from infectious and chronic diseases.
LernzielAt the end of this module students are able:
- to interpret the results of epidemiological studies
- to critically assess scientific literature
- to know the definition, dimensions and determinants of health
- to plan public health interventions and health promotion projects
- to draw a bridge from evidence to policies and politics
InhaltConcepts of descriptive and analytical epidemiology, study designs, measures of effect, confounding and bias, screening, surveilllance, definition of health and health promotion, health dimensions and health determinants, prevention strategies, public health interventions, public health action cycle, epidemiology and prevention of infectious and chronic diseases (HIV, COVID-19, Obesity, Iodine/PH nutrition).
SkriptHandouts are provided to students in the classroom.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
636-0109-00LStem Cells: Biology and Therapeutic ManipulationW4 KP3GT. Schroeder
KurzbeschreibungStem cells are central in tissue regeneration and repair, and hold great potential for therapy. We will discuss the role of stem cells in health and disease, and possibilities to manipulate their behavior for therapeutic application. Basic molecular and cell biology, engineering and novel technologies relevant for stem cell research and therapy will be discussed.
LernzielUnderstanding of current knowledge, and lack thereof, in stem cell biology, regenerative medicine and required technologies. Theoretical preparation for practical laboratory experimentation with stem cells.
InhaltWe will use different diseases to discuss how to potentially model, diagnose or heal them by stem cell based therapies. This will be used as a guiding framework to discuss relevant concepts and technologies in cell and molecular biology, engineering, imaging, bioinformatics, tissue engineering, that are required to manipulate stem cells for therapeutic application.

Topics will include:
- Embryonic and adult stem cells and their niches
- Induced stem cells by directed reprogramming
- Relevant basic cell biology and developmental biology
- Relevant molecular biology
- Cell culture systems
- Cell fates and their molecular control by transcription factors and signalling pathways
- Cell reprogramming
- Disease modelling
- Tissue engineering
- Bioimaging, Bioinformatics
- Single cell technologies
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengefördert
Medien und digitale Technologiengefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Persönliche KompetenzenKritisches Denkengefördert
Integrität und Arbeitsethikgefördert
376-0225-00LCritical Appraisal of Evidence for Exercise in Health and Disease Belegung eingeschränkt - Details anzeigen W3 KP2VE. Giannouli, E. de Bruin, R. Knols
KurzbeschreibungThis course will discuss the mechanisms and latest evidence-based recommendations of physical activity and exercise for a series of conditions and populations.
In the second part of each lecture session, published randomized controlled trials of the respective lecture`s topic will be discussed and critically appraised based on established tools.
LernzielOn completion of this course students will be able to:
1. understand the role of physical activity and sedentary behavior in the maintenance of health and the etiology, prevention and treatment of disease
2. synthesize effective physical activity and exercise interventions for the prevention and management of several diseases and populations
3. evaluate recent evidence regarding physical activity and exercise interventions
InhaltNew trends in physical activity for prevention and rehabilitation
Introduction to critical appraisal tools
Exercise for Cancer Rehabilitation
Exercise for Musculoskeletal Rehabilitation (Focus on Osteoarthritis and Low Back Pain)
Exercise in Parkinson`s disease
Exercise for Rehabilitation of Metabolic Disorders (Focus on Obesity and Diabetes type 2)
Exercise for age-related diseases and disorders, Part A (Focus on Frailty and Falls)
Exercise for Stroke Rehabilitation
Exercise in Dementia and Mild Cognitive Impairment
Exercise for Children’s Rehabilitation (focus on Cerebral Palsy)
Exercise for age-related diseases and disorders, Part B (Focus on Sarcopenia and Osteoporosis)
Exercise in Multiple Sclerosis
Exercise for Cardiovascular Rehabilitation (Focus on Heart Failure)
Literatur• Kanosue, K., Oshima, S., Cao, Z. B., & Oka, K. (Eds.). (2015). Physical activity, exercise, sedentary behav-ior and health (No. 12152). Springer Japan.
• Stensel, D. J., Hardman, A. E., & Gill, J. M. (Eds.). (2021). Physical activity and health: the evidence ex-plained. Routledge.
• Xiao, J. (Ed.). (2020). Physical exercise for human health. Singapore: Springer Singapore
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengefördert
Methodenspezifische KompetenzenAnalytische Kompetenzengefördert
Entscheidungsfindunggefördert
Problemlösunggefördert
Persönliche KompetenzenKritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
  •  Seite  1  von  1