Suchergebnis: Katalogdaten im Herbstsemester 2024
Science, Technology, and Policy Master ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
103-0347-00L | Landscape Planning and Environmental Systems ![]() | W | 3 KP | 2V | A. Grêt-Regamey | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Im Kurs werden die Methoden zur Erfassung und Messung der Landschaftseigenschaften, sowie Massnahmen und Umsetzung in der Landschaftsplanung vermittelt. Die Landschaftsplanung wird in den Kontext der Umweltsysteme (Boden, Wasser, Luft, Klima, Pflanzen und Tiere) gestellt und hinsichtlich gesellschaftspolitischer Zukunftsfragen diskutiert. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Ziele der Vorlesung sind: 1) Der Begriff Landschaftsplanung, die ökonomische Bedeutung von Landschaft und Natur im Kontext der Umweltsysteme (Boden, Wasser, Luft, Klima, Pflanzen und Tiere) erläutern. 2) Die Landschaftsplanung als umfassendes Informationssystem zur Koordination verschiedener Instrumente aufzeigen, indem die Ziele, Methoden, die Instrumente und deren Funktion in der Landschaftsplanung erläutert werden. 3) Die Leistungen von Ökosystemen verdeutlichen. 4) Die Grundlageninformationen über Natur und Landschaft aufzeigen: Analyse und Bewertung des komplexen Wirkungsgefüges aller Landschaftsfaktoren, Auswirkungen vorhandener und absehbaren Raumnutzungen (Naturgüter und Landschaftsfunktionen). 5) Die Erfassung und Messung der Eigenschaften der Landschaft. 6) Zweckmässiger Einsatz von GIS für die Landschaftsplanung kennen lernen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | In dieser Vorlesung werden folgende Themen behandelt: - Definition Landschaft, Landschaftsbegriff - Lanschaftsstrukturmasse - Landschaftswandel - Landschaftsplanung - Methoden, Instrumente und Ziele in der Landschaftsplanung (Politik) - Gesellschaftspolitische Zukunftsfragen - Umweltsysteme, ökologische Vernetzung - ökosystemleistungen - Urbane Landschaftsdienstleistungen - Praxis der Landschaftsplanung - Einsatz von GIS in der Landschaftsplanung | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Kein Skript. Die Unterlagen, bestehend aus Präsentationsunterlagen der einzelnen Referate werden teilweise abgegeben und stehen auf Moodle zum Download bereit. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Die Inhalte der Vorlesung werden in der zugehörigen Lehrveranstaltung 103-0347-01 U (Landscape Planning and Environmental Systems (GIS Exercises)) verdeutlicht. Eine entsprechende Kombination der Lehrveranstaltungen wird empfohlen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4057-00L | Climate History and Palaeoclimatology | W | 4 KP | 2G | H. Stoll, I. Hernández Almeida | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course spans 5 thematic modules: 1. Cyclic variation in the earth's orbit and the rise and demise of ice sheets. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? How stable or fragile is the ocean heat conveyor, past and present? 2. Feedbacks on climate cycles from CO2 and methane. What drives CO2 and methane variations over glacial cycles? What are the feedbacks with ocean circulation and the terrestrial biosphere? 3. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? 4. Century-scale droughts and civil catastrophes. Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations? 5. How sensitive is Earth's long term climate to CO2 and cloud feedbacks? What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? The weekly two hour lecture periods will feature lecture on these themes interspersed with short interactive tasks to apply new knowledge. Over the semester, student teams will each present in class one debate based on two scientific articles of contrasting interpretations. With flexible scheduling, students will participate in a laboratory activity to generate a new paleoclimate record from stalagmites. Student teams will be supported by an individual tutorial meeting to assist in debate preparation and another to assist in the interpretation of the lab activity data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1677-00L | Quantitative Vegetation Dynamics: Models from Tree to Globe | W | 3 KP | 3G | H. Lischke, U. Hiltner, B. Rohner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course introduces basic concepts and applications of dynamic vegetation models at various temporal and spatial scales. Different modeling approaches and underlying principles are presented and critically discussed during the lectures. In the integrated exercise parts, students work in a number of small projects with some of the introduced models to gain practical experience. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students will - be enabled to understand, assess and evaluate the fundamental properties of dynamic systems using vegetation models as case studies - obtain an overview of dynamic modelling techniques and their applications from the individual plant to the global level - understand the basic assumptions of the various model types, which dictate the applicability and limitations of the respective model - be enabled to work with such model types on their own - appreciate the methodological basis for impact assessments of future climate change and other environmental changes on ecosystems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Models of individuals - Deriving single-plant models from inventory measurements - Plant models based on 'first principles' Models at the stand scale - Simple approaches: matrix models - Competition for light and other resources as central mechanisms - Individual-based stand models: distance-dependent and distance-independent - Theoretical models Models at the landscape scale - Simple approaches: cellular automata - Dispersal and disturbances (windthrow, fire, bark beetles) as key mechanisms - Landscape models Global models - Sacrificing local detail to attain global coverage: processes and entities - Dynamic Global Vegetation Models (DGVMs) - DGVMs as components of Earth System Models | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts will be available in the course and for download | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Will be indicated at the beginning of the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | - Ideally basic experiences in modelling and systems analysis - Basic knowledge of programming, ideally in R - Good knowledge of general ecology, ideally of vegetation dynamics and forest systems | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1346-00L | Climate Change Mitigation: Carbon Dioxide Removal ![]() | W | 3 KP | 2G | N. Gruber, C. Brunner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Future climate change can only kept within reasonable bounds when CO2 emissions are drastically reduced. In this course, we will discuss a portfolio of options involving the alteration of natural carbon sinks and carbon sequestration. The course includes introductory lectures, presentations from guest speakers from industry and the public sector, and final presentations by the students. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The goal of this course is to investigate, as a group, a particular set of carbon mitigation/sequestration options and to evaluate their potential, their cost, and their consequences. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | From the large number of carbon sequestration/mitigation options, a few options will be selected and then investigated in detail by the students. The results of this research will then be presented to the other students, the involved faculty, and discussed in detail by the whole group. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | None | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Will be identified based on the chosen topic. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Exam: No final exam. Pass/No-Pass is assigned based on the quality of the presentation and ensuing discussion. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
103-0347-01L | Landscape Planning and Environmental Systems (GIS Exercises) ![]() | W | 3 KP | 2U | A. Grêt-Regamey, C. Brouillet, N. Klein, I. Nicholson Thomas | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Im Kurs werden die Inhalte der Vorlesung Landschaftsplanung und Umweltsysteme (103-0347-00 V) verdeutlicht. Die verschiedenen Aspekte (z.B. Habitatmodellierung, ökosystemleistungen, Landnutzungsänderung, Vernetzung) werden in einzelnen GIS Übungen praktisch erarbeitet. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | - Praktische Anwendung der theoretischen Grundlagen aus der Vorlesung - Quantitative Erfassung und Bewertung der Eigenschaften der Landschaft durchführen - Zweckmässiger Einsatz von GIS für die Landschaftsplanung kennen - Anhand von Fallbeispielen Massnahmen der Landschaftsplanung erarbeiten | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Einsatz von GIS in der Landschaftsplanung - Landschaftsanalyse - Landschaftsstrukturmasse - Modellierung von Habitaten und Landnutzungsänderungen - Berechnung urbaner Landschaftsdienstleistungen - ökologische Vernetzung | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Skripte und Präsentationsunterlagen für jede Übung werden auf Moodle zur Verfügung gestellt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Wird in der Veranstaltung genannt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | GIS-Grundkenntisse sind von Vorteil. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1257-00L | European Climate Change | W | 3 KP | 2G | E. Fischer, J. Rajczak, S. C. Scherrer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The lecture provides an overview of climate change in Europe, from a physical and atmospheric science perspective. It covers the following topics: • observational datasets, observation and detection of climate change; • underlying physical processes and feedbacks; • numerical and statistical approaches; • currently available projections. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | At the end of this course, participants should: • understand the key physical processes shaping climate change in Europe; • know about the methodologies used in climate change studies, encompassing observational, numerical, as well as statistical approaches; • be familiar with relevant observational and modeling data sets; • be able to tackle simple climate change questions using available data sets. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Contents: • global context • observational data sets, analysis of climate trends and climate variability in Europe • global and regional climate modeling • statistical downscaling • key aspects of European climate change: intensification of the water cycle, Polar and Mediterranean amplification, changes in extreme events, changes in hydrology and snow cover, topographic effects • projections of European and Alpine climate change | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Slides and lecture notes will be made available at http://www.iac.ethz.ch/edu/courses/master/electives/european-climate-change.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Participants should have a background in natural sciences, and have attended introductory lectures in atmospheric sciences or meteorology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
751-5201-10L | Tropical Cropping Systems, Soils and Livelihoods (with Excursion) ![]() IMPORTANT: Students who enroll for this course are strongly recommended to verify with lecturers from other courses whether their absence of two weeks may affect their performance in the respective courses. | W | 5 KP | 10G | J. Six, K. Benabderrazik | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course guides students in analyzing and comprehending tropical agroecosystems and food systems. Students gain practical knowledge of field methods, diagnostic tools and survey methods for tropical soils and agroecosystems. An integral part of the course is the two-week field project in the Mount Kenya Region, which is co-organized with the University of Embu (Kenya) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | (1) Overview of the major land use systems in Tropical agroecosystems in several contexts Africa (2) Interdisciplinary analysis of agricultural production systems (3) Knowledge on methods to assess agroecological performance of a tropical agroecosystems (4) Hands-on training on the use of field methods, diagnostic tools and survey methods. (5) Gain practical knowledge on how to assess to climate resilience and farming systems. (6) Collaboration in international students and stakeholders | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course guides students in analyzing and comprehending tropical agroecosystems. Students of ETH Zürch will work together with the students from Embu University (Kenya) in an interdisciplinary and intercultural team. Students will focus on the Agroecological performance and climate resilience of diverse farming systems in the Mount Kenya Region. From October 28th to November 11th, The students will take part in a field course in the Mount Kenya Region. Students will then gain practical knowledge on field, meeting several stakeholders of the agricultural and food systems and conducting various assessments related to climate resilience and farming systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | We would require the students enrolled to the class to send a short cover letter (1-page max.) by September 18rd 2023, justifying your motivation to enroll to this class. A selection of 20 students will be done on the basis of the letters. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4037-00L | Mineral Resources I Möglich als Wahlfach für Bachelor. Studierende mit Interesse für Modul "Mineral Resources" im nachfolgenden Master sollten die Kurse Mineral Resources I und II besser im ersten MSc Jahr belegen. | W | 3 KP | 2G | C. Chelle-Michou, L. Tavazzani | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Principles of hydrothermal ore formation, using base metal deposits (Cu, Pb, Zn) in sedimentary basins to explain the interplay of geological, chemical and physical factors from global scale to sample scale. Introduction to orthomagmatic ore formation (mostly Cr, Ni, PGE). Introduction to supergene residual deposits (Ni, Al) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Understanding the fundamental processes of hydrothermal, magmatic and supergene ore formation, recognising and interpreting mineralised rocks in geological context | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | (a) Principles of hydrothermal ore formation: base metal deposits in sedimentary basins. Practical classification of sample suites by genetic ore deposit types Mineral solubility and ore deposition, principles & thermodynamic prediction using activity diagrams. Driving forces and structural focussing of hydrothermal fluid flow (b) Introduction to orthomagmatic ore formation. Chromite, Ni-Cu sulphides and PGE in layered mafic intrusions. Distribution coefficients between silicate and sulphide melts. Carbonatites and pegmatite deposits. (c) Introduction to supergene residual deposits with emphasis on Ni laterites and bauxites | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Notes handed out during lectures | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Extensive literature list distributed in course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | 2 contact hours per lecture / week including lectures, exercises and practical study of samples, and small literature-based student presentations. Supplementary contact for sample practicals and exercises as required. Credits and mark based on participation in course (exercises, 50%) and 1h30 written exam in the last lecture of the semester (50%). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
|
Seite 1 von 1