Suchergebnis: Lerneinheiten im Herbstsemester 2019
Elektrotechnik und Informationstechnologie Master ![]() | ||||||
![]() | ||||||
![]() ![]() The core courses and specialisation courses below are a selection for students who wish to specialise in the area of "Signal Processing and Machine Learning ", see https://www.ee.ethz.ch/studies/main-master/areas-of-specialisation.html. The individual study plan is subject to the tutor's approval. | ||||||
![]() ![]() ![]() These core courses are particularly recommended for the field of "Signal Processing and Machine Learning". You may choose core courses form other fields in agreement with your tutor. A minimum of 24 credits must be obtained from core courses during the MSc EEIT. | ||||||
![]() ![]() ![]() ![]() Fundamentals at bachelor level, for master students who need to strengthen or refresh their background in the area. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
227-0101-00L | Discrete-Time and Statistical Signal Processing | W | 6 KP | 4G | H.‑A. Loeliger | |
![]() ![]() ![]() ![]() Advanced core courses bring students to gain in-depth knowledge of the chosen specialization. They are MSc level only. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0423-00L | Neural Network Theory | W | 4 KP | 2V + 1U | H. Bölcskei, E. Riegler | |
227-0427-00L | Signal Analysis, Models, and Machine Learning | W | 6 KP | 4G | H.‑A. Loeliger | |
227-0447-00L | Image Analysis and Computer Vision ![]() | W | 6 KP | 3V + 1U | L. Van Gool, O. Göksel, E. Konukoglu | |
252-0535-00L | Advanced Machine Learning ![]() | W | 8 KP | 3V + 2U + 2A | J. M. Buhmann | |
263-3210-00L | Deep Learning ![]() | W | 5 KP | 2V + 1U + 1A | T. Hofmann | |
![]() ![]() ![]() These specialisation courses are particularly recommended for the area of "Signal Processing and Machine Learning", but you are free to choose courses from any other field in agreement with your tutor. A minimum of 40 credits must be obtained from specialisation courses during the MSc EEIT. | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
227-0116-00L | VLSI I: From Architectures to VLSI Circuits and FPGAs ![]() | W | 6 KP | 5G | F. K. Gürkaynak, L. Benini | |
227-0121-00L | Kommunikationssysteme ![]() | W | 6 KP | 4G | A. Wittneben | |
227-0225-00L | Linear System Theory | W | 6 KP | 5G | J. Lygeros | |
227-0417-00L | Information Theory I | W | 6 KP | 4G | A. Lapidoth | |
227-0421-00L | Learning in Deep Artificial and Biological Neuronal Networks | W | 4 KP | 3G | B. Grewe | |
227-0477-00L | Acoustics I | W | 6 KP | 4G | K. Heutschi | |
263-5210-00L | Probabilistic Artificial Intelligence ![]() ![]() | W | 5 KP | 2V + 1U + 1A | A. Krause | |
401-4619-67L | Advanced Topics in Computational Statistics Findet dieses Semester nicht statt. | W | 4 KP | 2V | keine Angaben | |
401-3901-00L | Mathematical Optimization ![]() | W | 11 KP | 4V + 2U | R. Zenklusen | |
401-3621-00L | Fundamentals of Mathematical Statistics ![]() | W | 10 KP | 4V + 1U | S. van de Geer | |
227-0155-00L | Machine Learning on Microcontrollers ![]() Registration in this class requires the permission of the instructors. Class size will be limited to 25. Preference is given to students in the MSc EEIT. | W | 3 KP | 2G | M. Magno, L. Benini |
Seite 1 von 1