Search result: Catalogue data in Autumn Semester 2021
Science, Technology, and Policy Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Minor in Natural Sciences and Engineering | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Energy and Mobility | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0216-00L | Wind Energy | W | 4 credits | 2V + 1U | N. Chokani | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy. These subjects are introduced through a discussion of the basic principles of wind energy generation and conversion, and a detailed description of the broad range of relevant technical, economic and environmental topics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This mechanical engineering course focuses on the technical aspects of wind turbines; non-technical issues are not within the scope of this technically oriented course. On completion of this course, the student shall be able to conduct the preliminary aerodynamic and structural design of the wind turbine blades. The student shall also be more aware of the broad context of drivetrains, dynamics and control, electrical systems, and meteorology, relevant to all types of wind turbines. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0731-00L | Power Market I - Portfolio and Risk Management | W | 6 credits | 4G | D. Reichelt, G. A. Koeppel | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Portfolio and risk management in the electrical power business, Pan-European power market and trading, futures and forward contracts, hedging, options and derivatives, performance indicators for the risk management, modelling of physical assets, cross-border trading, ancillary services, balancing power market, Swiss market model. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowlege on the worldwide liberalisation of electricity markets, pan-european power trading and the role of power exchanges. Understand financial products (derivatives) based on power. Management of a portfolio containing physical production, contracts and derivatives. Evaluate trading and hedging strategies. Apply methods and tools of risk management. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Pan-European power market and trading 1.1. Power trading 1.2. Development of the European power markets 1.3. Energy economics 1.4. Spot and OTC trading 1.5. European energy exchange EEX 2. Market model 2.1. Market place and organisation 2.2. Balance groups / balancing energy 2.3. Ancillary services 2.4. Market for ancillary services 2.5. Cross-border trading 2.6. Capacity auctions 3. Portfolio and Risk management 3.1. Portfolio management 1 (introduction) 3.2. Forward and futures contracts 3.3. Risk management 1 (m2m, VaR, hpfc, volatility, cVaR) 3.4. Risk management 2 (PaR) 3.5. Contract valuation (HPFC) 3.6. Portfolio management 2 2.8. Risk Management 3 (enterprise wide) 4. Energy & Finance I 4.1. Options 1 – basics 4.2. Options 2 – hedging with options 4.3. Introduction to derivatives (swaps, cap, floor, collar) 4.4. Financial modelling of physical assets 4.5. Trading and hydro power 4.6. Incentive regulation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts of the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | 1 excursion per semester, 2 case studies, guest speakers for specific topics. Course Moodle: https://moodle-app2.let.ethz.ch/enrol/index.php?id=11636 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-1047-00L | Urban Systems and Transportation | W | 3 credits | 2G | G. Loumeau | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course is an introduction to urban and regional economics. It focuses on the formation and development of urban systems, and highlight how transport infrastructure investments can affect the location, size and composition of such systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The main objective of this course is to provide students with some basic tools to analyze the fundamental economic forces at play in urban systems (i.e., agglomeration and congestion forces), and the role of transport networks in shaping the structure of these systems. Why do urban areas grow or decline? How do transport networks affect the location of individuals and firms? Does the location of a firm determine its productivity? Can transport infrastructure investments reduce economic disparities? These are some of the questions that students should be able to answer after having completed the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course is organized in four parts. I start with the key observation that economic activity (both in terms of population density and productivity) is unevenly distributed in space. For instance, the share of the population living in urban centers is increasing globally, from 16% in 1900 and 50% in 2000 to about 68% by the year 2050 (UN, World Economic Prospects, 2014). The goal of the first part is then to understand the economic forces at play behind these trends, looking at the effects within and across urban areas. I will also discuss how natural or man-made geographical characteristics (e.g., rivers, mountains, borders, etc.) affect the development of such urban systems. In the second part, I discuss the planning and pricing of transport networks, moving from simple local models to more complex transport models at a global scale. The key aspects include: the first and second best road pricing, the public provision of transport networks and the demographic effects of transport networks. In the third part, I combine the previous two parts and analyze the interaction between urban systems and transportation. Thereby, the main focus is to understand the economic mechanisms that can lead to a general equilibrium of all actors involved. However, as the study of the historical development of urban systems and transport networks provides interesting insights, I will discuss how their interaction in the past shapes today’s economic geography. Finally, I broaden the scope of the course and explore related topics. There will be a particular emphasis on the relation between urban systems and fiscal federalism as well as environmental policies. Both aspects are important determinants of the contemporary developments of urban systems, and as such deserve our attention. In general, this class focuses on the latest research developments in urban and regional economics, though it does not require prior knowledge in this field. It pays particular attention to economic approaches, which are based on theoretical frameworks with strong micro-foundations and allow for precise policy recommendations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Course slides will be made available to students prior to each class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Course slides will be made available to students. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0163-00L | Nuclear Energy Conversion Does not take place this semester. | W | 4 credits | 2V + 1U | A. Manera | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Phyiscal fundamentals of the fission reaction and the sustainable chain reaction, thermal design, construction, function and operation of nuclear reactors and power plants, light water reactors and other reactor types, converion and breeding | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students get an overview on energy conversion in nuclear power plants, on construction and function of the most important types of nuclear reactors with special emphasis to light water reactors. They obtain the mathematical/physical basis for quantitative assessments concerning most relevant aspects of design, dynamic behaviour as well as material and energy flows. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Nuclear physics of fission and chain reaction. Themodynamics of nuclear reactors. Design of the rector core. Introduction into the dynamic behaviour of nuclear reactors. Overview on types of nuclear reactors, difference between thermal reactors and fast breaders. Construction and operation of nuclear power plants with pressurized and boiling water reactors, role and function of the most important safety systems, special features of the energy conversion. Development tendencies of rector technology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Hand-outs will be distributed. Additional literature and information on the website of the lab: Link | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | S. Glasston & A. Sesonke: Nuclear Reactor Engineering, Reactor System Engineering, Ed. 4, Vol. 2., Springer-Science+Business Media, B.V. R. L. Murray: Nuclear Energy (Sixth Edition), An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, Elsevier | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-1633-00L | Energy Conversion This course is intended for students outside of D-MAVT. | W | 4 credits | 3G | I. Karlin, G. Sansavini | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course provides the students with an introduction to thermodynamics and energy conversion. Students shall gain basic understanding of energy and energy interactions as well as their link to energy conversion technologies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Thermodynamics is key to understanding and use of energy conversion processes in Nature and technology. Main objective of this course is to give a compact introduction into basics of Thermodynamics: Thermodynamic states and thermodynamic processes; Work and Heat; First and Second Laws of Thermodynamics. Students shall learn how to use energy balance equation in the analysis of power cycles and shall be able to evaluate efficiency of internal combustion engines, gas turbines and steam power plants. The course shall extensively use thermodynamic charts to building up students’ intuition about opportunities and restrictions to increase useful work output of energy conversion. Thermodynamic functions such as entropy, enthalpy and free enthalpy shall be used to understand chemical and phase equilibrium. The course also gives introduction to refrigeration cycles, combustion and refrigeration. The course compactly covers the standard course of thermodynamics for engineers, with additional topics of a general physics interest (nonideal gas equation of state and Joule-Thomson effect) also included. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Thermodynamic systems, states and state variables 2. Properties of substances: Water, air and ideal gas 3. Energy conservation in closed and open systems: work, internal energy, heat and enthalpy 4. Second law of thermodynamics and entropy 5. Energy analysis of steam power cycles 6. Energy analysis of gas power cycles 7. Refrigeration and heat pump cycles 8. Nonideal gas equation of state and Joule-Thomson effect 9. Maximal work and exergy 10. Mixtures 11. Chemical reactions and combustion systems; chemical and phase equilibrium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture slides and supplementary documentation will be available online. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Thermodynamics: An Engineering Approach, by Cengel, Y. A. and Boles, M. A., McGraw Hill | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | This course is intended for students outside of D-MAVT. Students are assumed to have an adequate background in calculus, physics, and engineering mechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0567-00L | Engine Systems | W | 4 credits | 3G | C. Onder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to current and future engine systems and their control systems | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to methods of control and optimization of dynamic systems. Application to real engines. Understand the structure and behavior of drive train systems and their quantitative descriptions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Physical description and mathematical models of components and subsystems (mixture formation, load control, supercharging, emissions, drive train components, etc.). Case studies of model-based optimal design and control of engine systems with the goal of minimizing fuel consumption and emissions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Introduction to Modeling and Control of Internal Combustion Engine Systems Guzzella Lino, Onder Christopher H. 2010, Second Edition, 354 p., hardbound ISBN: 978-3-642-10774-0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Combined homework and testbench exercise (air-to-fuel-ratio control or idle-speed control) in groups | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0122-00L | Introduction to Electric Power Transmission: System & Technology | W | 4 credits | 2V + 2U | C. Franck, G. Hug | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to theory and technology of electric power transmission systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | At the end of this course, the student will be able to: describe the structure of electric power systems, name the most important components and describe what they are needed for, apply models for transformers and overhead power lines, explain the technology of transformers and lines, calculate stationary power flows and other basic parameters in simple power systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Structure of electric power systems, transformer and power line models, analysis of and power flow calculation in basic systems, technology and principle of electric power systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture script in English, exercises and sample solutions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0665-00L | Battery Integration Engineering Priority given to Electrical and Mechanical Engineering students Students are required to have attended one of the following courses: - 227-0664-00L Technology and Policy of Electrical Energy Storage - 529-0440-00L Physical Electrochemistry and Electrocatalysis - 529-0191-01L Renewable Energy Technologies II, Energy Storage and Conversion - 529-0659-00L Electrochemistry (Exception for PhD students). | W | 3 credits | 2V + 1U | T. J. Patey | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Batteries enable sustainable mobility, renewable power integration, various power grid services, and residential energy storage. Linked with low cost PV, Li-ion batteries are positioned to shift the 19th-century centralized power grid into a 21st-century distributed one. As with battery integration, this course combines understanding of electrochemistry, heat & mass transfer, device engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The learning objectives are: - Apply critical thinking on advancements in battery integration engineering. Assessment reflects this objective and is based on review of a scientific paper, with mark weighting of 10 / 25 / 65 for a proposal / oral presentation / final report, respectively. - Design battery system concepts for various applications in the modern power system and sustainable mobility, with a deep focus on replacing diesel buses with electric buses combined with charging infrastructure. - Critically assess progresses in battery integration engineering: from material science of novel battery technologies to battery system design. - Apply "lessons learned" from the history of batteries to assess progress in battery technology. - Apply experimental and physical concepts to develop battery models in order to predict lifetime. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Battery systems for the modern power grid and sustainable mobility. - Battery lifetime modeling by aging, thermal, and electric sub-models. - Electrical architecture of battery energy storage systems. - History and review of electrochemistry & batteries, and metrics to assess future developments in electrochemical energy stroage. - Sustainability and life cycle analysis of battery system innovations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Limited to 30 Students. Priority given to Electrical and Mechanical Engineering students. Mandatory - background knowledge in batteries & electrochemistry acquired in one of the following courses: - 227-0664-00L Technology and Policy of Electrical Energy Storage - 529-0440-00L Physical Electrochemistry and Electrocatalysis - 529-0191-01L Renewable Energy Technologies II, Energy Storage and Conversion - 529-0659-00L Electrochemistry Exception given for PhD students |
- Page 1 of 1