Search result: Catalogue data in Autumn Semester 2021

Science, Technology, and Policy Master Information
Minor in Natural Sciences and Engineering
Resources and Environment
NumberTitleTypeECTSHoursLecturers
103-0347-00LLandscape Planning and Environmental Systems Restricted registration - show details W3 credits2VA. Grêt-Regamey
AbstractIn the course, students learn about methods for the identification and measurement of landscape characteristics, as well as measures and policies for landscape planning. Landscape planning is put into the context of environmental systems (soil, water, air, climate, flora and fauna) and discussed with regard to socio-political questions of the future.
Learning objectiveThe aims of this course are:
1) To illustrate the concept of landscape planning, the economic relevance of landscape and nature in the context of the environmental systems (soil, water, air, climate, flora and fauna).
2) To show landscape planning as an integral information system for the coordination of different instruments by illustrating the aims, methods, instruments and their functions in landscape planning.
3) To show the importance of ecosystem services.
4) To learn basics about nature and landscape: Analysis and assessment of the complex interactions between landscape elements, effects of current and future land use (ecosystem goods and services, landscape functions).
5) To identify and measure the characteristics of landscape.
6) Learn how to use spatial data in landscape planning.
ContentIn this course, the following topics are discussed:
- Definition of the concept of landscape
- Relevance of landscape planning
- Landscape metrics
- Landscape change
- Methods, instruments and aims of landscape planning (policy)
- Socio-political questions of the future
- Environmental systems, ecological connectivity
- Ecosystem services
- Urban landscape services
- Practice of landscape planning
- Use of GIS in landscape planning
Lecture notesNo script. The documentation, consisting of presentation slides are partly handed out and are provided for download on Moodle.
Prerequisites / NoticeThe contents of the course will be illustrated in the associated course 103-0347-01 U (Landscape Planning and Environmental Systems (GIS Exercises)) or in Project LAND within the Experimental and Computer Lab (for Environmental Engineers). A combination of courses is recommended.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesassessed
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
651-4057-00LClimate History and PalaeoclimatologyW3 credits2GH. Stoll, I. Hernández Almeida, H. Zhang
AbstractClimate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport.
Learning objectiveThe student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia.
Content1. Overview of elements of the climate system and earth energy balance
2. The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the latest Palocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene?
3. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future?
4. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations?
5. The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before?
701-1341-00LWater Resources and Drinking WaterW3 credits2GS. Hug, M. Berg, F. Hammes, U. von Gunten
AbstractThe course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. Natural processes, anthropogenic pollution, legislation of groundwater and surface water and of drinking water as well as water treatment will be discussed for industrialized and developing countries.
Learning objectiveThe goal of this lecture is to give an overview over the whole path of drinking water from the source to the tap and understand the involved physical, chemical and biological processes which determine the drinking water quality.
ContentThe course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. The various water resources, particularly groundwater and surface water, are discussed as part of the natural water cycle influenced by anthropogenic activities such as agriculture, industry, urban water systems. Furthermore legislation related to water resources and drinking water will be discussed. The lecture is focused on industrialized countries, but also addresses global water issues and problems in the developing world. Finally unit processes for drinking water treatment (filtration, adsorption, oxidation, disinfection etc.) will be presented and discussed.
Lecture notesHandouts will be distributed
LiteratureWill be mentioned in handouts
701-1677-00LQuantitative Vegetation Dynamics: Models from Tree to GlobeW3 credits3GH. Lischke, U. Hiltner, B. Rohner
AbstractThis course provides hands-on experience with models of vegetation dynamics across temporal and spatial scales. The underlying principles, assets and trade-offs of the different approaches are introduced, and students work in a number of small projects with these models to gain first-hand experience.
Learning objectiveStudents will
- be able to understand, assess and evaluate the fundamental properties of dynamic systems using vegetation models as case studies
- obtain an overview of dynamic modelling techniques from the individual plant to the global level
- understand the basic assumptions of the various model types, which dictate the skill and limitations of the respective model
- be able to work with such model types on their own
- appreciate the methodological basis for impact assessments of future climate change and other environmental changes on ecosystems.
ContentModels of individuals
- Deriving single-plant models from inventory measurements
- Plant models based on 'first principles'

Models at the stand scale
- Simple approaches: matrix models
- Competition for light and other resources as central mechanisms
- Individual-based stand models: distance-dependent and distance-independent
- Theoretical models

Models at the landscape scale
- Simple approaches: cellular automata
- Dispersal and disturbances (windthrow, fire, bark beetles) as key mechanisms
- Landscape models

Global models
- Sacrificing local detail to attain global coverage: processes and entities
- Dynamic Global Vegetation Models (DGVMs)
- DGVMs as components of Earth System Models
Lecture notesHandouts will be available in the course and for download
LiteratureWill be indicated at the beginning of the course
Prerequisites / Notice- Basic training in modelling and systems analysis
- Basic knowledge of programming, ideally in R
- Good knowledge of general ecology, vegetation dynamics, and forest systems
651-4097-00LApplied Mineralogy and Non-Metallic Resources IW3 credits2GR. Kündig
AbstractGeological and mineralogical aspects to important non-metallic mineral ressources. Industrial use of specific mineral ressources as well as economic, strategic and environmental aspects are discussed. Examples from all over the world with a specific focus on the non-mineral mineral ressources potential in Switzerland.
Learning objectiveStudents will learn to understand the use of non-metallic mineral ressources from a geological and mineralogical point of view as well as from industrial, technical and strategical (political) point of view. Environmental aspects on the worldwide use of non-metallic mineral ressources are discussed. A special focus will be given on the situation in Switzerland.
ContentTeaching, case-studies and excursions (e.g. raw-material industry).

Course "Applied mineralogy and non-metallic ressources I" (autumn/winter semester):
Non-metallic ressources. Occurrences, geology, extraction, properties, fabrication and use. Industrial aspects, (new) technologies, market, stock, situation, reserves & ressources, trends and developpment, environmental aspects, law.

Chapters: e.g. coal/carbon (coal, graphite, diamond, fulleren); oil/gas (oil- and tarsands, oil-shists); phosphates/nitrates; aluminum (bauxite, corundum); salt; carbonates; titanium; clay and clay minerals; sulphur; gypsum/anhydrite; fluorite; asbestos; talc; micas; rare earth elements.

Course "Applied mineralogy and non-metallic ressources II" (fall/summer semester):
Stone and earth industry (gravel, sand, crushed stones, stones), natural stone, building stone, cement, cement-industry. New perception on raw materials. Case studies in applied mineralogy.

Chapters: e.g. Stone industry - technical aspects of building stones, properties, weathering, treatment, quarries, products. Crushed stones - quarries, products, planning, environment. Gravel an sand - ressources/reserves, environment (protection/law), alternative products (substitution). Cement and concrete (geological ressources, prospection, fabrication, environment).
Lecture notesWill be given according to the lessons. Partially integration of e-learning tools.
Literature- Walter L. Pohl (2011): Economic Geology - Principles and Practice. Wiley-Blackwell, 664 p., ISBN 978-1-4443-3663-4
- Harben, P.W. (2002): The Industrial Minerals Handybook. A Guide to Markets,
Specifications & Prices. Industrial Mineral Information, London 412 S., ISBN 1-904333-04-4
- Schweizerische Geotechnische Kommission (1996): Die mineralischen Rohstoffe der
Schweiz.- Herausgegeben von der Schw. Geotech. Komm., Zürich, 522 S., ISBN 3-907997-00-X
- Geotechnische Karte der Schweiz 1:200 000, 2. Aufl. Schweiz. Geotechn. Komm.
- Trueb, L.F. (1996): Die chemischen Elemente - Ein Streifzug durch das Periodensystem. S. Hirzel Verlag, Stuttgart, 416 S., ISBN 3-7776-0674-X
- Kesler, S. E. (1994): Mineral Resources, Economics and the Environment.-
Macmillan College Publishing Company, Inc., New York., 392 S., ISBN 0-02-362842-1
701-1346-00LCarbon Mitigation Restricted registration - show details
Number of participants limited to 100
Priority is given to the target groups: Bachelor and Master Environmental Sciences and PHD Environmental Sciences until September 21st,2021.
Waiting list will be deleted October 1st, 2021.
W3 credits2GN. Gruber
AbstractFuture climate change can only kept within reasonable bounds when CO2 emissions are drastically reduced. In this course, we will discuss a portfolio of options involving the alteration of natural carbon sinks and carbon sequestration. The course includes introductory lectures, presentations from guest speakers from industry and the public sector, and final presentations by the students.
Learning objectiveThe goal of this course is to investigate, as a group, a particular set of carbon mitigation/sequestration options and to evaluate their potential, their cost, and their consequences.
ContentFrom the large number of carbon sequestration/mitigation options, a few options will be selected and then investigated in detail by the students. The results of this research will then be presented to the other students, the involved faculty, and discussed in detail by the whole group.
Lecture notesNone
LiteratureWill be identified based on the chosen topic.
Prerequisites / NoticeExam: No final exam. Pass/No-Pass is assigned based on the quality of the presentation and ensuing discussion.
103-0347-01LLandscape Planning and Environmental Systems (GIS Exercises) Restricted registration - show details W3 credits2UA. Grêt-Regamey, C. Brouillet, N. Klein
AbstractThe course content of the lecture Landscape Planning and Environmental Systems (103-0347-00 V) will be illustrated in practical GIS exercises (e.g. habitat modelling, land use change, ecosystem services, connectivity).
Learning objective- Practical application of theory from the lectures
- Quantitative assessment and evaluation of landscape characteristics
- Learning useful applications of GIS for landscape planning
- Developing landscape planning measures for practical case studies
Content- Applications of GIS in landscape planning
- Landscape analysis
- Landscape structural metrics
- Modelling habitats and land use change
- Calculating urban ecosystem services
- Ecological connectivity
Lecture notesA script and presentation slides for each exercise will be provided on Moodle.
LiteratureWill be named in the lecture.
Prerequisites / NoticeBasic GIS skills are strongly recommended.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesfostered
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Media and Digital Technologiesassessed
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityfostered
Self-presentation and Social Influence fostered
Sensitivity to Diversityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityassessed
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
701-1253-00LAnalysis of Climate and Weather Data Information
Does not take place this semester.
W3 credits2GC. Frei
AbstractAn introduction into methods of statistical data analysis in meteorology and climatology. Applications of hypothesis testing, extreme value analysis, evaluation of deterministic and probabilistic predictions, principal component analysis.
Participants understand the theoretical concepts and purpose of methods, can apply them independently and know how to interpret results professionally.
Learning objectiveStudents understand the theoretical foundations and probabilistic concepts of advanced analysis tools in meteorology and climatology. They can conduct such analyses independently, and they develop an attitude of scrutiny and an awareness of uncertainty when interpreting results. Participants improve skills in understanding technical literature that uses modern statistical data analyses.
ContentThe course introduces several advanced methods of statistical data analysis frequently used in meteorology and climatology. It introduces the thoretical background of the methods, illustrates their application with example datasets, and discusses complications from assumptions and uncertainties. Generally, the course shall empower students to conduct data analysis thoughtfully and to interprete results critically.

Topics covered: exploratory methods, hypothesis testing, analysis of climate trends, measuring the skill of deterministic and probabilistic predictions, analysis of extremes, principal component analysis and maximum covariance analysis.

The course is divided into lectures and computer workshops. Hands-on experimentation with example data shall encourage students in the practical application of methods and train professional interpretation of results.

R (a free software environment for statistical computing) will be used during the workshop. A short introduction into R will be provided during the course.
Lecture notesDocumentation and supporting material:
- slides used during the lecture
- excercise sets and solutions
- R-packages with software and example datasets for workshop sessions

All material is made available via the lecture web-page.
LiteratureFor complementary reading:
- Wilks D.S., 2011: Statistical Methods in the Atmospheric Science. (3rd edition). Academic Press Inc., Elsevier LTD (Oxford)
- Coles S., 2001: An introduction to statistical modeling of extreme values. Springer, London. 208 pp.
Prerequisites / NoticePrerequisites: Basics in exploratory data analysis, probability calculus and statistics (incl linear regression) (e.g. Mathematik IV: Statistik (401-0624-00L) and Mathematik VI: Angewandte Statistik für Umweltnaturwissenschaften (701-0105-00L)). Some experience in programming (ideally in R). Some elementary background in atmospheric physics and climatology.
701-1551-00LSustainability Assessment Restricted registration - show details
Number of participants limited to 35.

Waiting list will be deleted October 1st, 2021.

No enrollment possible after October 1st, 2021.
W3 credits2GP. Krütli, D. Nef
AbstractThe course teaches concepts and methodologies of sustainability assessment. A special focus is given to the social dimension and to social justice as a guiding principle of sustainability. The format of the course is seminar-like, interactive.
Learning objectiveAt the end of the course, students:
- know core concepts of sustainable development, main features of social justice in the context of sustainability, a selection of methodologies for the assessment of sustainable development
- have a deepened understanding of the challenges of trade-offs between the different dimensions of sustainable development and their respective impacts on individual and societal decision-making
ContentThe course is structured as follows:
- overview of rationale, objectives, concepts and origins of sustainable development (approx. 15%)
- overview of the concept of social justice as guiding principle of the social dimension of sustainability (approx. 20%)
- analysis of a selection of concepts and methodologies to assess sustainable development in a variety of contexts (approx. 65%)
Lecture notesHandouts are provided
LiteratureSelected scientific articles and book-chapters
Prerequisites / NoticeStudents of this course may also be interested in the course transdisciplinary case study (tdCS) in the Spring semester (701-1502-00L)
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Personal CompetenciesCreative Thinkingfostered
Critical Thinkingassessed
701-1257-00LEuropean Climate ChangeW3 credits2GC. Schär, J. Rajczak, S. C. Scherrer
AbstractThe lecture provides an overview of climate change in Europe, from a physical and atmospheric science perspective. It covers the following topics:
• observational datasets, observation and detection of climate change;
• underlying physical processes and feedbacks;
• numerical and statistical approaches;
• currently available projections.
Learning objectiveAt the end of this course, participants should:
• understand the key physical processes shaping climate change in Europe;
• know about the methodologies used in climate change studies, encompassing observational, numerical, as well as statistical approaches;
• be familiar with relevant observational and modeling data sets;
• be able to tackle simple climate change questions using available data sets.
ContentContents:
• global context
• observational data sets, analysis of climate trends and climate variability in Europe
• global and regional climate modeling
• statistical downscaling
• key aspects of European climate change: intensification of the water cycle, Polar and Mediterranean amplification, changes in extreme events, changes in hydrology and snow cover, topographic effects
• projections of European and Alpine climate change
Lecture notesSlides and lecture notes will be made available at
http://www.iac.ethz.ch/edu/courses/master/electives/european-climate-change.html
Prerequisites / NoticeParticipants should have a background in natural sciences, and have attended introductory lectures in atmospheric sciences or meteorology.
  •  Page  1  of  1