Suchergebnis: Katalogdaten im Frühjahrssemester 2023

Informatik Master Information
Ergänzungen
Ergänzung in Theoretical Computer Science
NummerTitelTypECTSUmfangDozierende
252-0408-00LCryptographic Protocols Information W6 KP2V + 2U + 1AM. Hirt
KurzbeschreibungIn a cryptographic protocol, a set of parties wants to achieve some common goal, while some of the parties are dishonest. Most prominent example of a cryptographic protocol is multi-party computation, where the parties compute an arbitrary (but fixed) function of their inputs, while maintaining the secrecy of the inputs and the correctness of the outputs even if some of the parties try to cheat.
LernzielTo know and understand a selection of cryptographic protocols and to
be able to analyze and prove their security and efficiency.
InhaltThe selection of considered protocols varies. Currently, we consider
multi-party computation, secret-sharing, broadcast and Byzantine
agreement. We look at both the synchronous and the asynchronous
communication model, and focus on simple protocols as well as on
highly-efficient protocols.
SkriptWe provide handouts of the slides. For some of the topics, we also
provide papers and/or lecture notes.
Voraussetzungen / BesonderesA basic understanding of fundamental cryptographic concepts (as taught
for example in the course Information Security) is useful, but not
required.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggefördert
Persönliche KompetenzenKreatives Denkengefördert
Kritisches Denkengefördert
252-1424-00LModels of ComputationW6 KP2V + 2U + 1AM. Cook
KurzbeschreibungThis course surveys many different models of computation: Turing Machines, Cellular Automata, Finite State Machines, Graph Automata, Circuits, Tilings, Lambda Calculus, Fractran, Chemical Reaction Networks, Hopfield Networks, String Rewriting Systems, Tag Systems, Diophantine Equations, Register Machines, Primitive Recursive Functions, and more.
LernzielThe goal of this course is to become acquainted with a wide variety of models of computation, to understand how models help us to understand the modeled systems, and to be able to develop and analyze models appropriate for new systems.
InhaltThis course surveys many different models of computation: Turing Machines, Cellular Automata, Finite State Machines, Graph Automata, Circuits, Tilings, Lambda Calculus, Fractran, Chemical Reaction Networks, Hopfield Networks, String Rewriting Systems, Tag Systems, Diophantine Equations, Register Machines, Primitive Recursive Functions, and more.
261-5110-00LOptimization for Data Science Information W10 KP3V + 2U + 4AB. Gärtner, N. He
KurzbeschreibungThis course provides an in-depth theoretical treatment of optimization methods that are relevant in data science.
LernzielUnderstanding the guarantees and limits of relevant optimization methods used in data science. Learning theoretical paradigms and techniques to deal with optimization problems arising in data science.
InhaltThis course provides an in-depth theoretical treatment of classical and modern optimization methods that are relevant in data science.

After a general discussion about the role that optimization has in the process of learning from data, we give an introduction to the theory of (convex) optimization. Based on this, we present and analyze algorithms in the following four categories: first-order methods (gradient and coordinate descent, Frank-Wolfe, subgradient and mirror descent, stochastic and incremental gradient methods); second-order methods (Newton and quasi Newton methods); non-convexity (local convergence, provable global convergence, cone programming, convex relaxations); min-max optimization (extragradient methods).

The emphasis is on the motivations and design principles behind the algorithms, on provable performance bounds, and on the mathematical tools and techniques to prove them. The goal is to equip students with a fundamental understanding about why optimization algorithms work, and what their limits are. This understanding will be of help in selecting suitable algorithms in a given application, but providing concrete practical guidance is not our focus.
Voraussetzungen / BesonderesA solid background in analysis and linear algebra; some background in theoretical computer science (computational complexity, analysis of algorithms); the ability to understand and write mathematical proofs.
263-4400-00LAdvanced Graph Algorithms and Optimization Information W10 KP3V + 3U + 3AR. Kyng, M. Probst
KurzbeschreibungThis course will cover a number of advanced topics in optimization and graph algorithms.
LernzielThe course will take students on a deep dive into modern approaches to
graph algorithms using convex optimization techniques.

By studying convex optimization through the lens of graph algorithms,
students should develop a deeper understanding of fundamental
phenomena in optimization.

The course will cover some traditional discrete approaches to various graph
problems, especially flow problems, and then contrast these approaches
with modern, asymptotically faster methods based on combining convex
optimization with spectral and combinatorial graph theory.
InhaltStudents should leave the course understanding key
concepts in optimization such as first and second-order optimization,
convex duality, multiplicative weights and dual-based methods,
acceleration, preconditioning, and non-Euclidean optimization.

Students will also be familiarized with central techniques in the
development of graph algorithms in the past 15 years, including graph
decomposition techniques, sparsification, oblivious routing, and
spectral and combinatorial preconditioning.
Voraussetzungen / BesonderesThis course is targeted toward masters and doctoral students with an
interest in theoretical computer science.

Students should be comfortable with design and analysis of algorithms, probability, and linear algebra.

Having passed the course Algorithms, Probability, and Computing (APC) is highly recommended, but not formally required. If you are not
sure whether you're ready for this class or not, please consult the
instructor.
263-4508-00LAlgorithmic Foundations of Data Science Information W10 KP3V + 2U + 4AD. Steurer
KurzbeschreibungThis course provides rigorous theoretical foundations for the design and mathematical analysis of efficient algorithms that can solve fundamental tasks relevant to data science.
LernzielWe consider various statistical models for basic data-analytical tasks, e.g., (sparse) linear regression, principal component analysis, matrix completion, community detection, and clustering.

Our goal is to design efficient (polynomial-time) algorithms that achieve the strongest possible (statistical) guarantees for these models.

Toward this goal we learn about a wide range of mathematical techniques from convex optimization, linear algebra (especially, spectral theory and tensors), and high-dimensional statistics.

We also incorporate adversarial (worst-case) components into our models as a way to reason about robustness guarantees for the algorithms we design.
InhaltStrengths and limitations of efficient algorithms in (robust) statistical models for the following (tentative) list of data analysis tasks:

- (sparse) linear regression
- principal component analysis and matrix completion
- clustering and Gaussian mixture models
- community detection
SkriptTo be provided during the semester
LiteraturHigh-Dimensional Statistics
A Non-Asymptotic Viewpoint
by Martin J. Wainwright
Voraussetzungen / BesonderesMathematical and algorithmic maturity at least at the level of the course "Algorithms, Probability, and Computing".

Important: Optimization for Data Science 2018--2021
This course was created after a reorganization of the course "Optimization for Data Science" (ODS).
A significant portion of the material for this course has previously been taught as part of ODS.
Consequently, it is not possible to earn credit points for both this course and ODS as offered in 2018--2021.
This restriction does not apply to ODS offered in 2022 or afterwards and you can earn credit points for both courses in this case.
263-4509-00LComplex Network ModelsW5 KP2V + 2AJ. Lengler
KurzbeschreibungComplex network models are random graphs that feature one or several properties observed in real-world networks (e.g., social networks, internet graph, www). Depending on the application, different properties are relevant, and different complex network models are useful. This course gives an overview over some relevant models and the properties they do and do not cover.
LernzielThe students get familiar with a portfolio of network models, and they know their features and shortcomings. For a given application, they can identify relevant properties for this applications and can select an appropriate network model.
InhaltNetwork models: Erdös-Renyi random graphs, Chung-Lu graphs, configuration model, Kleinberg model, geometric inhomogeneous random graphs
Properties: degree distribution, structure of giant and smaller components, clustering coefficient, small-world properties, community structures, weak ties
SkriptThe script is available in moodle or at https://as.inf.ethz.ch/people/members/lenglerj/CompNetScript.pdf

It will be updated during the semester.
LiteraturLatora, Nikosia, Russo: "Complex Networks: Principles, Methods and Applications"
van der Hofstad: "Random Graphs and Complex Networks. Volume 1"
Voraussetzungen / BesonderesThe students must be familiar with the basics of graph theory and of probability theory (e.g. linearity of expectation, inequalities of Markov, Chebyshev, Chernoff). The course "Randomized Algorithms and Probabilistic Methods" is helpful, but not required.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
263-4510-00LIntroduction to Topological Data Analysis Information W8 KP3V + 2U + 2AP. Schnider
KurzbeschreibungTopological Data Analysis (TDA) is a relatively new subfield of computer sciences, which uses techniques from algebraic topology and computational geometry and topology to analyze and quantify the shape of data. This course will introduce the theoretical foundations of TDA.
LernzielThe goal is to make students familiar with the fundamental concepts, techniques and results in TDA. At the end of the course, students should be able to read and understand current research papers and have the necessary background knowledge to apply methods from TDA to other projects.
InhaltMathematical background (Topology, Simplicial complexes, Homology), Persistent Homology, Complexes on point clouds (Čech complexes, Vietoris-Rips complexes, Delaunay complexes, Witness complexes), the TDA pipeline, Reeb Graphs, Mapper
LiteraturMain reference:

Tamal K. Dey, Yusu Wang: Computational Topology for Data Analysis, 2021
https://www.cs.purdue.edu/homes/tamaldey/book/CTDAbook/CTDAbook.html


Other references:

Herbert Edelsbrunner, John Harer: Computational Topology: An Introduction, American Mathematical Society, 2010
https://bookstore.ams.org/mbk-69

Gunnar Carlsson, Mikael Vejdemo-Johansson: Topological Data Analysis with Applications, Cambridge University Press, 2021
Link

Robert Ghrist: Elementary Applied Topology, 2014
https://www2.math.upenn.edu/~ghrist/notes.html

Allen Hatcher: Algebraic Topology, Cambridge University Press, 2002
https://pi.math.cornell.edu/~hatcher/AT/ATpage.html
Voraussetzungen / BesonderesThe course assumes knowledge of discrete mathematics, algorithms and data structures and linear algebra, as supplied in the first semesters of Bachelor Studies at ETH.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Problemlösunggeprüft
Projektmanagementgefördert
Soziale KompetenzenKommunikationgeprüft
Kooperation und Teamarbeitgefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Persönliche KompetenzenKreatives Denkengefördert
263-4656-00LDigital Signatures Information W5 KP2V + 2AD. Hofheinz
KurzbeschreibungDigital signatures as one central cryptographic building block. Different security goals and security definitions for digital signatures, followed by a variety of popular and fundamental signature schemes with their security analyses.
LernzielThe student knows a variety of techniques to construct and analyze the security of digital signature schemes. This includes modularity as a central tool of constructing secure schemes, and reductions as a central tool to proving the security of schemes.
InhaltWe will start with several definitions of security for signature schemes, and investigate the relations among them. We will proceed to generic (but inefficient) constructions of secure signatures, and then move on to a number of efficient schemes based on concrete computational hardness assumptions. On the way, we will get to know paradigms such as hash-then-sign, one-time signatures, and chameleon hashing as central tools to construct secure signatures.
LiteraturJonathan Katz, "Digital Signatures."
Voraussetzungen / BesonderesIdeally, students will have taken the D-INFK Bachelors course "Information Security" or an equivalent course at Bachelors level.
272-0300-00LAlgorithmik für schwere Probleme Information
Diese Lerneinheit beinhaltet die Mentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Informatik A n i c h t !
W5 KP2V + 1U + 1AH.‑J. Böckenhauer, D. Komm
KurzbeschreibungDiese Lerneinheit beschäftigt sich mit algorithmischen Ansätzen zur Lösung schwerer Probleme, insbesondere mit exakten Algorithmen mit moderat exponentieller Laufzeit und parametrisierten Algorithmen.

Eine umfassende Reflexion über die Bedeutung der vorgestellten Ansätze für den Informatikunterricht an Gymnasien begleitet den Kurs.
LernzielAuf systematische Weise eine Übersicht über die Methoden zur Lösung schwerer Probleme kennen lernen. Vertiefte Kenntnisse im Bereich exakter und parameterisierter Algorithmen erwerben.
InhaltZuerst wird der Begriff der Berechnungsschwere erläutert (für die Informatikstudierenden wiederholt). Dann werden die Methoden zur Lösung schwerer Probleme systematisch dargestellt. Bei jeder Algorithmenentwurfsmethode wird vermittelt, was sie uns garantiert und was sie nicht sichern kann und womit wir für die gewonnene Effizienz bezahlen. Ein Schwerpunkt liegt auf exakten Algorithmen mit moderat exponentieller Laufzeit und auf parametrisierten Algorithmen.
SkriptUnterlagen und Folien werden zur Verfügung gestellt.
LiteraturJ. Hromkovic: Algorithmics for Hard Problems, Springer 2004.

R. Niedermeier: Invitation to Fixed-Parameter Algorithms, 2006.

M. Cygan et al.: Parameterized Algorithms, 2015.

F. Fomin et al.: Kernelization, 2019.

F. Fomin, D. Kratsch: Exact Exponential Algorithms, 2010.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Problemlösunggeprüft
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Persönliche KompetenzenKreatives Denkengeprüft
Kritisches Denkengeprüft
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
272-0302-00LApproximations- und Online-Algorithmen Information
Findet dieses Semester nicht statt.
W5 KP2V + 1U + 1AD. Komm
KurzbeschreibungDiese Lerneinheit behandelt approximative Verfahren für schwere Optimierungsprobleme und algorithmische Ansätze zur Lösung von Online-Problemen sowie die Grenzen dieser Ansätze.
LernzielAuf systematische Weise einen Überblick über die verschiedenen Entwurfsmethoden von approximativen Verfahren für schwere Optimierungsprobleme und Online-Probleme zu gewinnen. Methoden kennenlernen, die Grenzen dieser Ansätze aufweisen.
InhaltApproximationsalgorithmen sind einer der erfolgreichsten Ansätze zur Behandlung schwerer Optimierungsprobleme. Dabei untersucht man die sogenannte Approximationsgüte, also das Verhältnis der Kosten einer berechneten Näherungslösung und der Kosten einer (nicht effizient berechenbaren) optimalen Lösung.
Bei einem Online-Problem ist nicht die gesamte Eingabe von Anfang an bekannt, sondern sie erscheint stückweise und für jeden Teil der Eingabe muss sofort ein entsprechender Teil der endgültigen Ausgabe produziert werden. Die Güte eines Algorithmus für ein Online-Problem misst man mit der competitive ratio, also dem Verhältnis der Kosten der berechneten Lösung und der Kosten einer optimalen Lösung, wie man sie berechnen könnte, wenn die gesamte Eingabe bekannt wäre.

Inhalt dieser Lerneinheit sind
- die Klassifizierung von Optimierungsproblemen nach der erreichbaren Approximationsgüte,
- systematische Methoden zum Entwurf von Approximationsalgorithmen (z. B. Greedy-Strategien, dynamische Programmierung, LP-Relaxierung),
- Methoden zum Nachweis der Nichtapproximierbarkeit,
- klassische Online-Probleme wie Paging oder Scheduling-Probleme und Algorithmen zu ihrer Lösung,
- randomisierte Online-Algorithmen,
- Entwurfs- und Analyseverfahren für Online-Algorithmen,
- Grenzen des "competitive ratio"- Modells und Advice-Komplexität als eine Möglichkeit, die Komplexität von Online-Problemen genauer zu messen.
LiteraturDie Vorlesung orientiert sich teilweise an folgenden Büchern:

J. Hromkovic: Algorithmics for Hard Problems, Springer, 2004

D. Komm: An Introduction to Online Computation: Determinism, Randomization, Advice, Springer, 2016

Zusätzliche Literatur:

A. Borodin, R. El-Yaniv: Online Computation and Competitive Analysis, Cambridge University Press, 1998
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Problemlösunggeprüft
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Persönliche KompetenzenKreatives Denkengeprüft
Kritisches Denkengeprüft
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
401-3052-10LGraph TheoryW10 KP4V + 1UB. Sudakov
KurzbeschreibungBasics, trees, Caley's formula, matrix tree theorem, connectivity, theorems of Mader and Menger, Eulerian graphs, Hamilton cycles, theorems of Dirac, Ore, Erdös-Chvatal, matchings, theorems of Hall, König, Tutte, planar graphs, Euler's formula, Kuratowski's theorem, graph colorings, Brooks' theorem, 5-colorings of planar graphs, list colorings, Vizing's theorem, Ramsey theory, Turán's theorem
LernzielThe students will get an overview over the most fundamental questions concerning graph theory. We expect them to understand the proof techniques and to use them autonomously on related problems.
SkriptLecture will be only at the blackboard.
LiteraturWest, D.: "Introduction to Graph Theory"
Diestel, R.: "Graph Theory"

Further literature links will be provided in the lecture.
Voraussetzungen / BesonderesStudents are expected to have a mathematical background and should be able to write rigorous proofs.
401-3902-21LNetwork & Integer Optimization: From Theory to ApplicationW6 KP3GR. Zenklusen
KurzbeschreibungThis course covers various topics in Network and (Mixed-)Integer Optimization. It starts with a rigorous study of algorithmic techniques for some network optimization problems (with a focus on matching problems) and moves to key aspects of how to attack various optimization settings through well-designed (Mixed-)Integer Programming formulations.
LernzielOur goal is for students to both get a good foundational understanding of some key network algorithms and also to learn how to effectively employ (Mixed-)Integer Programming formulations, techniques, and solvers, to tackle a wide range of discrete optimization problems.
InhaltKey topics include:
- Matching problems;
- Integer Programming techniques and models;
- Extended formulations and strong problem formulations;
- Solver techniques for (Mixed-)Integer Programs;
- Decomposition approaches.
Literatur- Bernhard Korte, Jens Vygen: Combinatorial Optimization. 6th edition, Springer, 2018.
- Alexander Schrijver: Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003. This work has 3 volumes.
- Vanderbeck François, Wolsey Laurence: Reformulations and Decomposition of Integer Programs. Chapter 13 in: 50 Years of Integer Programming 1958-2008. Springer, 2010.
- Alexander Schrijver: Theory of Linear and Integer Programming. John Wiley, 1986.
Voraussetzungen / BesonderesSolid background in linear algebra. Preliminary knowledge of Linear Programming is ideal but not a strict requirement. Prior attendance of the course Linear & Combinatorial Optimization is a plus.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
Problemlösunggeprüft
Soziale KompetenzenKommunikationgeprüft
Persönliche KompetenzenKreatives Denkengeprüft
402-0448-01LQuantum Information Processing I: Concepts
Dieser theoretisch ausgerichtete Teil QIP I bildet zusammen mit dem experimentell ausgerichteten Teil 402-0448-02L QIP II, die beide im Frühjahrssemester angeboten werden, im Master-Studiengang Physik das experimentelle Kernfach "Quantum Information Processing" mit total 10 ECTS-Kreditpunkten.
W5 KP2V + 1UJ. Home
KurzbeschreibungThe course covers the key concepts of quantum information processing, including quantum algorithms which give the quantum computer the power to compute problems outside the reach of any classical supercomputer.
Key concepts such as quantum error correction are discussed in detail. They provide fundamental insights into the nature of quantum states and measurements.
LernzielBy the end of the course students are able to explain the basic mathematical formalism of quantum mechanics and apply them to quantum information processing problems. They are able to adapt and apply these concepts and methods to analyse and discuss quantum algorithms and other quantum information-processing protocols.
InhaltThe topics covered in the course will include quantum circuits, gate decomposition and universal sets of gates, efficiency of quantum circuits, quantum algorithms (Shor, Grover, Deutsch-Josza,..), quantum error correction, fault-tolerant designs, and quantum simulation.
SkriptWill be provided.
LiteraturQuantum Computation and Quantum Information
Michael Nielsen and Isaac Chuang
Cambridge University Press
Voraussetzungen / BesonderesA good understanding of finite dimensional linear algebra is recommended.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
  •  Seite  1  von  1