Search result: Catalogue data in Autumn Semester 2021
Earth Sciences Master ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() Students have to complete 6 credits in part A, and 6 credits in part B. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
651-4045-00L | Microscopy of Metamorphic Rocks | W+ | 2 credits | 2G | A. Galli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Repetition of methods using optic properties of crystals and the polarising microscope. Identification of minerals and metamorphic parageneses. Description and interpretation of microstructures. Age relationship of crystallisation and deformation. Estimation of metamorphic grade. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | - Advanced knowledge in optical mineralogy - Application of methods to determine minerals in thin sections - Identification and characterisation of metamorphic minerals - Description of rocks. Derive correct petrographic rock name, based on modal abundance and microstructure/texture - Interpretation of rock fabric/microstructure, parageneses and mineral reactions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Repetition of principal optical properties and of microscopic methods to identify minerals. Emphasis on interpretation of interference figures. - Study typical metamorphic rocks in thin sections - Description and interpretation of parageneses and texture/microstructures. Study the age relationship of crystallisation and deformation. - Estimation of metamorphic grade - Quantification: To determine volume percentage of rock components - Scientific documentation: Descriptions, drawings, photomicrography using different kinds of illumination and using plane- or circular-polarised light. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | handouts with additional information on theory and for exercises, in English. To brush up knowledge in optical mineralogy read the relevant chapters in the book of W.D. Nesse (2004). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | - Nesse, W.D.: Introduction to optical mineralogy. 3. Ed. (2004). Figures from this book will be used in lectures. Besides the theory, this book describes all optical properties of important minerals. Petrographers working on varying types of silicate rocks should have a look at this book. -Yardley, B.W.D., Mackenzie, W.S. und Guilford, C. (1990): Atlas of metamorphic rocks and their textures. Longman Scientific. With nice pictures. Also available in the D-ERDW library, NO building, on D-floor. - Vernon, R.H. (2004): A practical guide to rock microstructures. Cambridge Univ. Press. 594 pages. Includes color photos and a glossary. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Number of participants 24. Participants should have basic knowledge in crystallography, mineralogy and petrology, and have taken practical courses in microscopy of thin sections, as well as lectures in metamorphic petrology and structural geology! Other microscopy courses at department D-ERDW are on: - magmatic rocks, following this course in second half of semester (P. Ulmer, IGP; Inst. for Geochemistry and Petrology) - sedimentary rocks (Geol. Institute) - ore minerals (reflected light microscopy, Th. Driesner, IGP) - microstructures, deformed rocks (Geol. Institute) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4047-00L | Microscopy of Magmatic Rocks | W+ | 2 credits | 2G | P. Ulmer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course provides basic knowledge in microscopy of igneous rocks. Apart from the identification of common igneous minerals in thin sections, mineral assemblages, textures and structures will be investigated and the results of microscopy will be combined with igneous phase equilibria to understand generation, differentiation and emplacement of igneous rocks. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The principal goal of this course is to acquire expertise in : (1) optical determination of minerals in igneous rocks using the polarizing microscope (2) Identification of igneous rocks basing on modal mineralogy, structure and texture; (3) Interpretation of textures and structures and associated igneous processes; (4) Application of phase diagrams to natural rocks. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This practical course bases on the course 'Microscopy of metamorphic rocks' (A. Galli), that is taught immediately before this course, where basic knowledge in optical mineralogy and the use of the polarizing microscope is acquired. In this course, the most important (common) igneous minerals and rocks are studied in thin sections under the polarizing microscope. Mineral assemblages, structures, textures and crystallization sequences are determined and utilized to understand the generation, differentiation and emplacement of igneous rocks. In addition, we will apply igneous phase equilibria that have been introduced in other lectures (such as magmatism and metamorphism I&II at ETH or an equivalent igneous petrology course) to natural rock samples in order to constrain qualitatively parental magma compositions and crystallization conditions. The range of investigated rocks encompasses mantle rocks, tholeiitic, calc-alkaline and alkaline plutonic and volcanic rocks that contain the most common igneous minerals. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Basis of the optical determinations of (igneous) minerals using the polarizing microscope are the tables of Tröger ('Optische Bestimmung der gesteinsbildenden Minerale', Optical determination of rock-forming minerals, 1982) that are available in sufficient number in the class room. Additional notes will be distributed during the lecture Furthermore, I recommend the lecture notes of H.-G- Stosch (University of Karlsruhe, in German) that can be provided in printed form upon request. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | There are several good textbooks on the subject of ´mineralogy in thin sections´ that I can suggest upon request. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | This course does not include an introduction in optical mineralogy and the use of a polarizing microscope and, therefore, bases on the course ¨Microscopy of metamorphic rocks¨ taught by A. Galli immediately before this course where these basic principles are provided. Alternatively, e.g. for external students, an equivalent course is required to follow this practical course. The delivery of 3 acceptably solved homework assignments is acknowledged with an increase of the final grade by 0.25. Other microscope courses taught at ETH Zurich at the D-ERDW are: Basics of optical mineralogy and petrography (M.W. Schmidt, BSc-course in German) Microscopy of metamophic rocks (A. Galli, prerequisite for this course) Sedimentary petrography and microscopy (V. Picotti & M.G. Fellin) Reflected Light Microscopy and Ore Deposits Practical (T. Driesner) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4051-00L | Reflected Light Microscopy and Ore Deposits Practical ![]() Number of participants limited to 19. | W+ | 2 credits | 2P | T. Driesner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to reflected light microscopy. Use of the microscope. Identification of opaque minerals through the use of determination tables. Description of textures and paragenetic sequences. Taking the course in parallel with Ore Deposits I (651-4037-00L) is recommended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Recognition of the most important ore minerals in polished section, interpretation of mineral textures in geologcal context | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction to reflected light microscopy as a petrographic technique. Leaning main diagnostic criteria. Study of small selection of important and characteristic minerals. Interpreting polished (thin) sections as exercise | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | To be handed out in class | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Credits and mark based on independent description of selected sample(s) towards the end of the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4113-00L | Sedimentary Petrography and Microscopy | W+ | 2 credits | 2G | V. Picotti, M. G. Fellin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Microscopy of carbonate (1st half of semester) and sliciclastic rocks (2nd half) rocks as well as siliceous, phosphatic and evaporitic sediements. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Description of grains and cement/matrix, texture, classification of the main sedimentary rocks. Discussion and interpretation of the environment of sedimentation. Diagenetic Processes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Microscopy of carbonate and siliciclastic rocks, siliceous and phosphatic rocks, their origin and classification. Diagenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | English textbooks recommended | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Tucker, M.E. (2001): Sedimentary Petrology-An introduction to the Origin of Sedimentary Rocks, 3rd Editition. Blackwell Science Ltd., Oxford, 262 p. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The earlier attendance of other MSc microscopy courses (e.g. magmatic and metamorphic rocks) is not required if during the BSc a general course on microscopy of rocks was completed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4055-00L | Analytical Methods in Petrology and Geology | W+ | 3 credits | 2G | J. Allaz, S. Bernasconi, M. Guillong, L. Zehnder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Practical work in analytical chemistry for Earth science students. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowledge of some analytical methods used in Earth sciences, introduction to data interpretation, writing of a scientific report. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction to analytical geochemistry and atom physics, notably: - X-ray diffraction (XRD), - X-ray fluorescence analysis (XRF), - Electron Probe Microanalyzer (EPMA), - Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS), - Mass spectroscopy for light isotopes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Short handouts for each analytical method. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4117-00L | Sediment Analysis ![]() Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W+ | 3 credits | 2G | M. G. Fellin, A. Gilli, V. Picotti | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Theoretical background and application of some basic methods for sediment analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The main goal is to learn how to apply the analysis of the texture and grain-size of sediments to constrain the sedimentary processes and environments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | A one-day fieldtrip to a local outcrop to learn how to describe sediments in the field and to collect samples for grain-size and compositional analysis. Application of the same analytical techniques on samples of unknown origin: the sampling sites will be revealed at the end of the course. Discussion of the theoretical background and of the results in class. At the end of the course, the student will have to hand in a report with the presentation and discussion of all the data produced during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | For the various analytical methods English texts will be provided in class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Introduction to clastic sedimentology. R.J. Cheel, Brock University | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4063-00L | X-Ray Powder Diffraction ![]() Number of participants limited to 18. | W+ | 3 credits | 2G | M. Plötze | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | In the course the students learn to measure X-ray diffraction patterns of minerals and to evaluate these using different software for qualitative and quantitative mineral composition as well as crystallographic parameters. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Upon successful completion of this course students are able to: - describe the principle of X-ray diffraction analysis - carry out a qualitative and quantitative mineralogical analysis independently, - critically assess the data, - communicate the results in a scientific report. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fundamental principles of X-ray diffraction Setup and operation of X-ray diffractometers Interpretation of powder diffraction data Qualitative and quantitative phase analysis of crystalline powders (e.g. with Rietveld analysis) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Selected handouts will be made available in the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | BRINDLEY G.W. and BROWN G. (ed) Crystal structures of clay minerals and their X-ray identification. London : Mineralogical Society monograph no. 5 (1984) (Link) DINNEBIER, R.E. et al.: Powder Diffraction. Royal Society of Chemistry, Cambridge, 2008. (http://pubs.rsc.org/en/Content/eBook/978-0-85404-231-9) PECHARSKY, V.K. and ZAVALIJ, P.Y: Fundamentals of Powder Diffraction and Structural Characterization of Materials. Springer, 2009. (https://link.springer.com/book/10.1007/978-0-387-09579-0?page=2#toc) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course includes a high portion of practical exercises in sample preparation as well as measurement and evaluation of X-ray powder diffraction data. Own sample will be analysed qualitatively and quantitatively. Knowledge in mineralogy of this system is essential. Software will be provided for future use on own Laptop. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4131-00L | Introduction to Digital Mapping ![]() Does not take place this semester. Number of participants limited to 20. | W+ Dr | 2 credits | 3V | to be announced | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course gives an introduction to digital mapping in geosciences from data collection to the final map/model construction. The course focuses on the practical application of different digital mapping tools. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students are able to • describe possible applications using digital mapping devices in geosciences • apply selected digital mapping tools in the office and in the field • visualize field data • evaluate 2D and 3D geodata for the development of a geological model | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The following topics are covered • Sensor specifications of tablets and smartphones • Field apps and databases used in digital mapping • Access to spatial geodata in Switzerland, but also worldwide • Visualization of 2D and 3D data • Several case studies on digital mapping • 1 day excursion with practical training underground and with surface geology | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisite is • 651-4031-00 Geographic Information Systems or an equivalent course • 651-3482-00 Geological Field Course II: Sedimentary Rocks or an equivalent course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() A minimum of two restricted choice modules must be completed for the major Geology. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() The compulsory courses of the module take place in spring semester. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4043-00L | Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W | 3 credits | 2G | V. Picotti, A. Gilli, I. Hernández Almeida, H. Stoll | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | -You will understand chemistry and biology of the marine carbonate system -You will be able to relate carbonate mineralogy with facies and environmental conditions -You will be familiar with cool-water and warm-water carbonates -You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle -You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth) -You will be able to use geological archives as source of information on global change -You will have an overview of marine sedimentation through time | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | -carbonates,: chemistry, mineralogy, biology -carbonate sedimentation from the shelf to the deep sea -carbonate facies -cool-water and warm-water carbonates -organic-carbon and black shales -C-cycle, carbonates, Corg : CO2 sources and sink -Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr -marine sediments thorugh geological time -carbonates and evaporites -lacustrine carbonates -economic aspects of limestone | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | no script. scientific articles will be distributed during the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems" | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The grading of students is based on in-class exercises and end-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4057-00L | Climate History and Palaeoclimatology | W | 3 credits | 2G | H. Stoll, I. Hernández Almeida, H. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Overview of elements of the climate system and earth energy balance 2. The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the latest Palocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene? 3. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future? 4. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations? 5. The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before? | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4057-00L | Climate History and Palaeoclimatology | W+ | 3 credits | 2G | H. Stoll, I. Hernández Almeida, H. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Overview of elements of the climate system and earth energy balance 2. The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the latest Palocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene? 3. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future? 4. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations? 5. The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before? | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4043-00L | Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W | 3 credits | 2G | V. Picotti, A. Gilli, I. Hernández Almeida, H. Stoll | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | -You will understand chemistry and biology of the marine carbonate system -You will be able to relate carbonate mineralogy with facies and environmental conditions -You will be familiar with cool-water and warm-water carbonates -You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle -You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth) -You will be able to use geological archives as source of information on global change -You will have an overview of marine sedimentation through time | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | -carbonates,: chemistry, mineralogy, biology -carbonate sedimentation from the shelf to the deep sea -carbonate facies -cool-water and warm-water carbonates -organic-carbon and black shales -C-cycle, carbonates, Corg : CO2 sources and sink -Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr -marine sediments thorugh geological time -carbonates and evaporites -lacustrine carbonates -economic aspects of limestone | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | no script. scientific articles will be distributed during the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems" | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The grading of students is based on in-class exercises and end-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4041-00L | Sedimentology I: Physical Processes and Sedimentary Systems | W+ | 3 credits | 2G | V. Picotti | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Sediments preserved a record of past landscapes. This courses focuses on understanding the processes that modify sedimentary landscapes with time and how we can read this changes in the sedimentary record. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students learn basic concepts of modern sedimentology and stratigraphy in the context of sequence stratigraphy and sea level change. They discuss the advantages and pitfalls of the method and look beyond. In particular we pay attention to introducing the importance of considering entire sediment routing systems and understanding their functionning. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Details on the program will be handed out during the first lecture. We will attribute the papers for presentation on the 26th, so please be here on that day! | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | The sedimentary record of sea-level change Angela Coe, the Open University. Cambridge University Press | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The grading of students is based on in-class exercises and end-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4043-00L | Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W+ | 3 credits | 2G | V. Picotti, A. Gilli, I. Hernández Almeida, H. Stoll | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | -You will understand chemistry and biology of the marine carbonate system -You will be able to relate carbonate mineralogy with facies and environmental conditions -You will be familiar with cool-water and warm-water carbonates -You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle -You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth) -You will be able to use geological archives as source of information on global change -You will have an overview of marine sedimentation through time | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | -carbonates,: chemistry, mineralogy, biology -carbonate sedimentation from the shelf to the deep sea -carbonate facies -cool-water and warm-water carbonates -organic-carbon and black shales -C-cycle, carbonates, Corg : CO2 sources and sink -Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr -marine sediments thorugh geological time -carbonates and evaporites -lacustrine carbonates -economic aspects of limestone | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | no script. scientific articles will be distributed during the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems" | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The grading of students is based on in-class exercises and end-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4901-00L | Quaternary Dating Methods ![]() | W | 3 credits | 2G | I. Hajdas, M. Christl, S. Ivy Ochs | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Reconstruction of time scales is critical for all Quaternary studies in both Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture, we focus on the last 50 ka and the methods that are most frequently used for dating Quaternary sediments and landforms in this time range. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students will be made familiar with the details of the six dating methods through lectures on basic principles, analysis of case studies, solving of problem sets for age calculation and visits to dating laboratories. At the end of the course students will: 1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies. 2. be able to calculate an age based on data of the six methods studied. 3. choose which dating method (or combination of methods) is suitable for a certain field problem. 4. critically read and evaluate the application of dating methods in scientific publications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Introduction: Time scales for the Quaternary, Isotopes and decay 2. Radiocarbon dating: principles and applications 3. Cosmogenic nuclides: 3He,10Be, 14C, 21Ne, 26Cl, 36Cl 4. U-series disequilibrium dating 5. Luminescence dating 6. Introduction to incremental: varve counting, dendrochronology and ice cores chronologies 7. Cs-137 and Pb-210 (soil, sediments, ice core) 8. Summary and comparison of results from several dating methods at specific sites | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Visit to radiocarbon lab, cosmogenic nuclide lab, accelerator (AMS) facility. Visit to Limno Lab and sampling a sediment core Optional (individual): 1-5 days hands-on radiocarbon dating at the C14 lab at ETH Hoenggerebrg Required: attending the lecture, visiting laboratories, handing back solutions for problem sets (Exercises) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4063-00L | X-Ray Powder Diffraction ![]() Number of participants limited to 18. | W | 3 credits | 2G | M. Plötze | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | In the course the students learn to measure X-ray diffraction patterns of minerals and to evaluate these using different software for qualitative and quantitative mineral composition as well as crystallographic parameters. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Upon successful completion of this course students are able to: - describe the principle of X-ray diffraction analysis - carry out a qualitative and quantitative mineralogical analysis independently, - critically assess the data, - communicate the results in a scientific report. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fundamental principles of X-ray diffraction Setup and operation of X-ray diffractometers Interpretation of powder diffraction data Qualitative and quantitative phase analysis of crystalline powders (e.g. with Rietveld analysis) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Selected handouts will be made available in the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | BRINDLEY G.W. and BROWN G. (ed) Crystal structures of clay minerals and their X-ray identification. London : Mineralogical Society monograph no. 5 (1984) (Link) DINNEBIER, R.E. et al.: Powder Diffraction. Royal Society of Chemistry, Cambridge, 2008. (http://pubs.rsc.org/en/Content/eBook/978-0-85404-231-9) PECHARSKY, V.K. and ZAVALIJ, P.Y: Fundamentals of Powder Diffraction and Structural Characterization of Materials. Springer, 2009. (https://link.springer.com/book/10.1007/978-0-387-09579-0?page=2#toc) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course includes a high portion of practical exercises in sample preparation as well as measurement and evaluation of X-ray powder diffraction data. Own sample will be analysed qualitatively and quantitatively. Knowledge in mineralogy of this system is essential. Software will be provided for future use on own Laptop. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4132-00L | Field Course IV: Non Alpine Field Course Does not take place this semester. Priority is given to D-ERDW students. If space is available UZH Geography and Earth System Sciences students may attend this field course at full cost. No registration through myStudies. The registration for excursions and field courses goes through http://exkursionen.erdw.ethz.ch only. | W+ | 3 credits | 6P | W. Behr | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Students who want to participate hand in a short motivation letter (max. 1 page A4). The final selection will be based on this motivation letter. Deadline for motivation letter: 31 October 2018 Final decision 20 November 2018 Students registering for the course confirm having read and accepted the terms and conditions for excursions and field courses of D-ERDW Link | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4111-00L | Experimental Rock Physics and Deformation ![]() | W | 3 credits | 2G | A. S. Zappone, C. Madonna, L. Tokle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | We illustrate some physical properties, deformation mechanisms, and define flow laws. We show the fundamental techniques for the measurement in laboratory of density, permeability, elastic properties and deformation. We presented actual case studies and discuss upscaling from laboratory to field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The objective of this course is to introduce rock physics and rock deformation, and discuss the aid of laboratory tests to interpretation at large scale . Rock Physics provides the understanding to connect geomechanical and geophysical data to the intrinsic properties of rocks, such as mineral composition and texture. Rock Physics is a key component in geo-resources exploration and exploitation, and in geo-hazard assessment. For rock deformation we will illustrate how to determined flow-laws of rocks from experiments and how to extrapolate to natural conditions. Since the time scale of laboratory experiments is several orders of magnitude faster than nature, we will compare the microstructure of natural rocks with that produced during the experiments to prove that the same mechanisms are operating. For this purpose, the fundamental techniques of experimental rock deformation will be illustrated and test on natural rock samples in the plastic deformation regime (high temperature) as well in the brittle regime ( room temperature) will be presented. We will perform tests in the lab, to acquire the data, to correct for calibration and to process the data and finally to interpret the data. The course is at Master student level, but will be useful for PhDs students who want to begin to work in experimental deformation or who want to know the meaning and the limitation of laboratory flow-laws for geodynamic modelling | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course will focus on research-based term project, lectures will alternate with laboratory demonstrations. We will illustrate how intrinsic properties of rocks (mineral composition, porosity, pore fluids, crystallographic orientation, microstructures) are connected to the following physical properties: - permeability; - elastic properties for seismic interpretations; - anisotropy of the above physical properties. We will measure some of those parameters in laboratory and discuss real case studies and applications. Principles of deformation mechanisms, flow laws, and deformation mechanism maps will be presented in lectures. In laboratory we will show: - Experimental deformation rigs (gas, fluid and solid confining media); - Main part of the apparatus (mechanical, hydraulic, heating system, data logging); - Calibration of an apparatus (distortion of the rig; transducers calibration); - Various types of tests (axial deformation; diagonal cut and torsion; deformation; constant strain rate tests; creep tests; stepping tests); | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course of Structural Geology (651-3422-00L) is highly recommended before attending this course. Moreover the students should have basic knowledge in geophysics and mineralogy/crystallography. In doubt, please contact the course responsible beforehand. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-3521-00L | Tectonics | W | 3 credits | 2V | W. Behr, S. Willett | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Comprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales. Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Comprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales. Assessment of mechanisms responsible for plate movements (the Earth as a heat transfer machine, dynamics of earth mantle, plate driving forces) and subsequent large-scale structures (oceanic basins and cycle of the oceanic lithosphere, convergence and mountain systems and continental growth, etc) through theoretical and experimental information. Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Plate tectonic frame work: earth cooling and mantle-plate interaction, three kinds of plate boundaries and their roles and characteristics, cycle of oceanic lithosphere, longlifety and growth of continents, supercontinents. Rheology of layered lithosphere and upper mantle. Obduction systems Collisions systems Extensional systems Basin evolution Passive and active continental margin evolution | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Condie, K. C. 1997. Plate tectonics and crustal evolution. Butterworth-Heinemann, Oxford. Cox, A. & Hart, R. B. 1986. Plate tectonics. How it works. Blackwell Scientific Publications, Oxford. Dewey, J. F. 1977. Suture zone complexities: A review. Tectonophysics 40, 53-67. Dewey, J. F., Pitman III, W. C., Ryan, W. B. F. & Bonin, J. 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137-3180. Kearey, P. & Vine, F. J. 1990. Global tectonics. Blackwell Scientific Publications, Oxford. Park, R. G. 1993. Geological structures and moving plates. Chapman & Hall, Glasgow. Turcotte, D. L. & Schubert, G. 2002. Geodynamics. Cambridge University Press, Cambridge. Windley, B. F. 1995. The evolving continents. John Wiley & Sons Ltd, Chichester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4341-00L | Source to Sink Sedimentary Systems ![]() | O | 3 credits | 2G | T. I. Eglinton, J. Hemingway, S. Willett | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The transfer and redistribution of mass and chemical elements at the Earth’s surface is controlled by a wide range of processes that will affect the magnitude and nature of fluxes exported from continental fluvial systems. This course addresses the production, transport, and deposition of sediments from source to sink and their interaction with biogeochemical cycles. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course aims at integrating different earth science disciplines (geomorphology, geochemistry, and tectonics) to gain a better understanding of the physical and biogeochemical processes at work across the sediment production, routing, and depositional systems. It will provide insight into how it is actually possible to “see a world in a grain of sand” by taking into account the cascade of physical and chemical processes that shaped and modified sediments and chemical elements from their source to their sink. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Lectures will introduce the main source to sink concepts and cover physical and biogeochemical processes in upland, sediment producing areas (glacial and periglacial processes; mass movements; hillslopes and soil processes/development; critical zone biogeochemical processes). Field excursion (3 days, 8-10 October): will cover the upper Rhône from the Rhône glacier to the Rhône delta in Lake Geneva) as small scale source-to-sink system. Practicals comprise (I) a small autonomous project on the Rhône catchment based on samples collected during the field trip and (II) an independent report on how you would design, build, and implement your own source-to-sink study. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes are provided online during the course. They summarize the current subjects week by week and provide the essential theoretical background. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Suggested references : - "Sediment routing systems: the fate of sediments from Source to Sink" by Philip A. Allen (Cambridge University Press) - "Principles of soilscape and landscape evolution by Garry Willgoose" (Cambridge University Press) - "Geomorphology, the mechanics and chemistry of landscapes" by Robert S. Anderson & Suzanne P. Anderson (Cambridge University Press) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4243-00L | Seismic Stratigraphy and Facies | W | 2 credits | 3G | G. Eberli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course teaches the techniques of seismic interpretation for solving geological and environmental problems. A special focus is given to the seismic facies analysis and seismic sequence stratigraphy of different depositional systems. In addition, examples are presented how seismic data can be integrated into research projects in basin analysis, paleoceanography and paleoclimatology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | 1. Acquire techniques for a comprehensive interpretation of seismic sections for solving geologic, stratigraphic and environmental problems 2. Correlation of seismic facies and seismic attributes to lithologic facies in different sedimentary systems 3. Learn the principles and techniques of seismic sequence stratigraphy and the differences between lithostratigraphy and sequence stratigraphy 4. Learn to integrate seismic data into paleoceonagraphic and paleoclimatic research. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The four day course consists of lectures that are accompanied by a variety of exercises. Day 1: Introduction seismic facies analysis with exercise Seismic resolution Seismic facies of contourite drift systems and their value as physical indicators of global current changes. Day 2: Seismic attributes and seismic geomorphology Siliciclastic deltas, shelves and turbidite systems, 2D-3D Exercise: Seismic section Tarragon Basin and reconstructing the basin evolution with respect to the climate conditions at the end of the Miocene. Seismic facies carbonate systems Carbonates as recorders of sea level and paleoclimate Deepwater environments, including cold-water coral habitats Day 3: Carbonates versus volcanic seismic facies Introduction seismic attributes Faults and structures on seismic sections Seismic facies of mixed systems with Exercises from Canada and the Paradox Basin Day 4: Sea level and sedimentation Telling ages on seismic section Seismic stratigraphy and sequence stratigraphy Exercise: Sequence analysis Straits of Andros Final discussion | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | An original script (110 pages) designed for the class will be distributed at the beginning of the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Books Seismic Interpretation of Depositional Systems: Ariztegui, D. and Wildi, W. (eds.), 2003, Lake Systems from Ice Age to Industrial Time. Eclogae Geologicae Helvetiae Special Issue, v. 96, S1-S133. Bacon, M., Simm, R. and Redshaw, T., 2003, 3-D Seismic Interpretation. Cambridge University Press, 112 pp. Chopra, S., and K. J. Marfurt, 2007, Seismic attributes for prospect identification and reservoir characterization. SEG Geophysical Development Series, pp 481. Davies, R.J., Posementier, H.W., Wood, L.J., and Cartwright, J.A. (eds.), 2007, Seismic Geomorphology. Geological Society Special Publication 277, pp274. Eberli, G.P., Massaferro, J.L., and Sarg, J.F. (eds.), 2004, Seismic Imaging of Carbonate Reservoirs and Systems. AAPG Memoir 81. Rebesco, M. & Camerlenghi, A., 2008, Contourites. Developments in Sedimentology 60, Elsevier.Weimer, P. and Davis, T.L. (eds.), 1996, Applications of 3-D seismic data to exploration and production. AAPG Studies in Geology, No. 42 and SEG Geophysical Development Series, No. 5., pp. 270. Gupta, S. and Cowie, P. (eds). 2000, Controls in the Stratigraphic Development of Extensional Basins. Basin Research Special Issue, v. 12, 445pp Harris, P.M., Saller, A.H., and Simo, J.A. (eds.), 1999, Advances in carbonate sequence stratigraphy: application to reservoirs, outcrops, and models. SEPM Special Publication v. 63. Payton, C.E., (ed.), 1977, Seismic stratigraphy-applications to hydrocarbon exploration. AAPG Memoir 26, 516pp. Van Wagoner, J.C., R.M. Mitchum, K.M. Campion, and V.D. Rahmanian, 1990, Siliciclastic sequence stratigraphy in well logs, cores, and outcrops. AAPG Methods in Exploration Series, No. 7, 55pp. Weimer, P. and Posamentier, H.W., 1993, Siliciclastic Sequence Stratigraphy: Recent Developments and Applications. AAPG Memoir 58. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic knowledge in sedimentology and stratigraphy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4021-00L | Engineering Seismology | W+ | 3 credits | 2G | D. Fäh, V. Perron | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course is a general introduction to the methods of seismic hazard analysis. It provides an overview of the input data and the tools in deterministic and probabilistic seismic hazard assessment, and discusses the related uncertainties. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course is a general introduction to the methods of seismic hazard analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | In the course it is explained how the disciplines of seismology, geology, strong-motion geophysics, and earthquake engineering contribute to the evaluation of seismic hazard. It provides an overview of the input data and the tools in deterministic and probabilistic seismic hazard assessment, and discusses the related uncertainties. The course includes the discussion related to Intensity and macroseismic scales, historical seismicity and earthquake catalogues, ground motion parameters used in earthquake engineering, definitions of the seismic source, ground motion attenuation, site effects and microzonation, and the use of numerical tools to estimate ground motion parameters, both in a deterministic and probabilistic sense. During the course recent earthquakes and their impacts are discussed and related to existing hazard assessments for the areas of interest. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4015-00L | Earthquakes I: Seismotectonics | O | 3 credits | 2G | A. P. Rinaldi, T. Diehl | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | If you're interested in knowing more about the relationship between seismicity and plate tectonics, this is the course for you. (If you're not that interested, but your program of study requires that you complete this course, this is also the course for you.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The aim of the course is to obtain a basic understanding of the physical process behind earthquakes and their basic mathematical description. By the conclusion of this course, we hope that you will be able to: - describe the relationship between earthquakes and plate tectonics in a more sophisticated and complete way - explain earthquake source representations of varying complexity; - address earthquakes in the context of different tectonic settings; - explain the statistical behaviour of global earthquakes - describe and connect the ingredients for a seismotectonic study | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course features a series of 14 meetings, in which we review some fundamentals of continuum mechanics and tensor analysis required for a complete understanding of the relation between earthquakes and plate tectonics. Our goal is to help you understand deformation the small scale (fault) to the scale of plate tectonics. We will tell you about several ways to represent an earthquake source; we'll present these in order of increasing sophistication. You will enjoy (at least) a computer/class exercise and a guest lecture. Topics covered in the course include: review of stress and deformation in the Earth, stress and strain tensors, rheology and failure criteria, fault stresses, friction and effects of fluids earthquake focal mechanisms; relationship between stress fields and focal mechanisms; seismic moment and moment tensors; crustal deformation from seismic, geologic, and geodetic observations; earthquake stress drop, scaling, and source parameters; global earthquake distribution; current global earthquake activity; different seismotectonic regions; examples of earthquake activity in different tectonic settings. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Course notes will be made available on a designated course web site. Most of the topics discussed in the course are available in the book mentioned below. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | S. Stein and M. Wyssession, An introduction to seismology, earthquakes and earth structure, Blackwell Publishing, Malden, USA, (2003). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic knowledge of continuum mechanics and rock mechanics, as well as notion of tensor analysis is strongly suggested. We recommend to have taken the course Continuum Mechanics (generally taught during the Fall semester). This course will be taught in fall 2017 and it will be followed by Earthquakes 2: Source Physics in Spring 2018. The course will be evaluated in a final written test covering the topics discussed during the lectures. The course will be worth 3 credit points, and a satisfactory total grade (4 or better) is needed to obtain 3 ECTS. The course will be given in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() One additional elective course of at least 3KP has to be completed for this Module according to prior agreement with the Subject Advisor (Autumn or Spring Semester). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() The courses of this module are offered by UZH and must be registered at UZH. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4267-00L | Specializing in Geographic Information Science V (University of Zürich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: GEO372 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W+ | 5 credits | 2V + 2U | University lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() The Courses of Choice are offered by UZH and must be approved by the subject advisor. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() Courses are only offered in spring semester. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4901-00L | Quaternary Dating Methods ![]() | O | 3 credits | 2G | I. Hajdas, M. Christl, S. Ivy Ochs | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Reconstruction of time scales is critical for all Quaternary studies in both Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture, we focus on the last 50 ka and the methods that are most frequently used for dating Quaternary sediments and landforms in this time range. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students will be made familiar with the details of the six dating methods through lectures on basic principles, analysis of case studies, solving of problem sets for age calculation and visits to dating laboratories. At the end of the course students will: 1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies. 2. be able to calculate an age based on data of the six methods studied. 3. choose which dating method (or combination of methods) is suitable for a certain field problem. 4. critically read and evaluate the application of dating methods in scientific publications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Introduction: Time scales for the Quaternary, Isotopes and decay 2. Radiocarbon dating: principles and applications 3. Cosmogenic nuclides: 3He,10Be, 14C, 21Ne, 26Cl, 36Cl 4. U-series disequilibrium dating 5. Luminescence dating 6. Introduction to incremental: varve counting, dendrochronology and ice cores chronologies 7. Cs-137 and Pb-210 (soil, sediments, ice core) 8. Summary and comparison of results from several dating methods at specific sites | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Visit to radiocarbon lab, cosmogenic nuclide lab, accelerator (AMS) facility. Visit to Limno Lab and sampling a sediment core Optional (individual): 1-5 days hands-on radiocarbon dating at the C14 lab at ETH Hoenggerebrg Required: attending the lecture, visiting laboratories, handing back solutions for problem sets (Exercises) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() Additional elective courses of at least 6KP have to be completed for this Module according to prior agreement with the Subject Advisor (Autumn or Spring Semester). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-3561-00L | Cryosphere | W+ | 3 credits | 2V | M. Huss, A. Bauder, D. Farinotti | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course introduces the different components of the cryosphere - snow, glaciers, ice sheets, sea ice and lake ice, and permafrost - and their respective roles in the climate system. For each subsystem, essential physical aspects are emphasized, and their dynamics are described quantitatively and using examples. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students are able to - qualitatively explain relevant processes, feedbacks and relationships between the different components of the cryosphere, - quantify and interpret physical processes, which determine the state of the cryospheric components, with simple calculations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course provides an introduction into the various components of the cryosphere: snow, glaciers, ice sheets, sea ice and lake ice, permafrost, and their roles in the climate system. Essential physical aspects are emphasized for each subsystem: e.g. the material properties of ice, mass balance and dynamics of glaciers, or the energy balance of sea ice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts will be distributed during the teaching semester | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Benn, D., & Evans, D. J. (2014). Glaciers and glaciation. Routledge. Cuffey, K. M., & Paterson, W. S. B. (2010). The physics of glaciers. Academic Press. Hooke, R. L. (2019). Principles of glacier mechanics. Cambridge University Press. Further literature will be indicated during the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-1581-00L | Seminar in Glaciology | W | 3 credits | 2S | A. Bauder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to classic and modern literature of research in Glaciology. Active participation is expected and participants are mentored by PhD students of Glaciology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | In-depth knowledge of selected topics of research in Glaciology. Introduction to different types of scientific presentation. Improve ability of the discussion of scientific topics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Selected topics of scientific research in Glaciology | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Copies/pdf of scientific papers will be distributed during the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Active participation is expected with presence at the sessions. Only s limited number of participants can be accepted. One of the following courses should be taken as preparation: - 651-3561-00L Kryosphäre - 101-0289-00L Applied Glaciology - 651-4101-00L Physics of Glaciers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4077-00L | Quantification and Modeling of the Cryosphere: Dynamic Processes (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: GEO815 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W | 3 credits | 1V | University lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Overview of the most important earth surface processes and landforms in cold regions (regions with glaciers and intense frost) with emphasis on high-mountain aspects. Discussion of present research challenges. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowledge of the most prominent climate-related geomorphological processes and phenomena in high-mountain regions, understanding of primary research challenges. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Erosion and sedimentation by glaciers as a function of topography, englacial temperature, sediment balance, sliding and melt water runoff. Processes and landforms in regions of seasonal and perennial frost (frost weathering, rock falls, debris cones/talus, solifluction, permafrost creep/rock glaciers, debris flows). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Glacial and periglacial geomorphodynamics in high-mountain regions. Ca. 100 pages. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | references in skript | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic knowledge about geomorphology and glaciers/permafrost from corresponding courses at ETH/UZH or from the related lecture notes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4101-00L | Physics of Glaciers ![]() | W | 3 credits | 3G | M. Lüthi, F. T. Walter, M. Werder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Understanding glaciers and ice sheets with simple physical concepts. Topics include the reaction of glaciers to the climate, flow of glacier ice, temperature in glaciers and ice sheets, glacier hydrology, glacier seismology, basal motion and calving glaciers. A special focus is the current development of the ice sheets of Greenland and Antarctica. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | After the course the students are able understand and interpret measurements of ice flow, subglacial water pressure and ice temperature. They will have an understanding of glaciology-related physical concepts sufficient to understand most of the contemporary literature on the topic. The students will be well equipped to work on glacier-related problems by numerical modeling, remote sensing, and field work. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The dynamics of glaciers and polar ice sheets is the key requisite to understand their history and their future evolution. We will take a closer look at ice deformation, basal motion, heat flow and glacier hydraulics. The specific dynamics of tide water and calving glaciers is investigated, as is the reaction of glaciers to changes in mass balance (and therefore climate). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | http://people.ee.ethz.ch/~luethim/teaching.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | A list of relevant literature is available on the class web site. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | High school mathematics and physics knowledge required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0289-00L | Applied Glaciology | W | 4 credits | 2G | D. Farinotti, A. Bauder, M. Werder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course transmits fundamental knowledge for treating applied glaciological problems. Topics include climate-glacier interactions, glacier ice flow, glacier hydrology, ice avalanches, and lake ice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The objectives of the courses are to: - learn about fundamental glaciological processes, including glacier mass balance, ice dynamics, and glacier-related hazards; - apply the above knowledge to some case studies inspired by contract-works performed at ETH's Glaciology section; - generate the own computer code to solve the above case studies, and interpret the results; - understand, both in class and in the field, the practical relevance of glaciology, with a focus on the Swiss applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course will develop along the following outline: - How glaciology became a scientific discipline - Glaciology and hydropower - Glacier mechanics and ice flow - Gravitational glacier instabilities - Glacier hydrology and glacier lake outbursts - Lake ice and ice bearing capacity - Field excursion to Jungfraujoch - Discussion of the exercises performed during the semester | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Digital lecture handouts will be distributed prior to each class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Links to relevant literature will be provided during the classes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Completed BSc studies. Basic knowledge in computer scripting in any language (e.g. Python, R, Julia, Matlab, IDL, ...) will be advantageous for solving the exercises. The exercises will be performed in groups. A minimal level of fitness is required for the field excursion. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-3521-00L | Tectonics | W+ | 3 credits | 2V | W. Behr, S. Willett | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Comprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales. Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Comprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales. Assessment of mechanisms responsible for plate movements (the Earth as a heat transfer machine, dynamics of earth mantle, plate driving forces) and subsequent large-scale structures (oceanic basins and cycle of the oceanic lithosphere, convergence and mountain systems and continental growth, etc) through theoretical and experimental information. Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Plate tectonic frame work: earth cooling and mantle-plate interaction, three kinds of plate boundaries and their roles and characteristics, cycle of oceanic lithosphere, longlifety and growth of continents, supercontinents. Rheology of layered lithosphere and upper mantle. Obduction systems Collisions systems Extensional systems Basin evolution Passive and active continental margin evolution | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Condie, K. C. 1997. Plate tectonics and crustal evolution. Butterworth-Heinemann, Oxford. Cox, A. & Hart, R. B. 1986. Plate tectonics. How it works. Blackwell Scientific Publications, Oxford. Dewey, J. F. 1977. Suture zone complexities: A review. Tectonophysics 40, 53-67. Dewey, J. F., Pitman III, W. C., Ryan, W. B. F. & Bonin, J. 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137-3180. Kearey, P. & Vine, F. J. 1990. Global tectonics. Blackwell Scientific Publications, Oxford. Park, R. G. 1993. Geological structures and moving plates. Chapman & Hall, Glasgow. Turcotte, D. L. & Schubert, G. 2002. Geodynamics. Cambridge University Press, Cambridge. Windley, B. F. 1995. The evolving continents. John Wiley & Sons Ltd, Chichester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() The compulsory courses take place in spring semester. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() The courses of choice are offered by UZH and must be registered at UZH. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-1380-00L | Paleontological Excursions on Weekends (University of Zürich) ![]() No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: BIO279 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W | 1 credit | 1P | University lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Ein- oder zweitägige Geländeaufenthalte (eventuell mit Museumsbesuch) zum Vertiefen regionalgeologischer und erdgeschichtlicher Kenntnisse sowie zum Sammeln praktischer paläontologischer Erfahrungen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Besuch von Fossilvorkommen im In- und Ausland, um die Erhaltung der Fossilien, die fazielle Ausbildung und die Stratigraphie der fossilführenden Schichten kennenzulernen und zu diskutieren sowie gegebe- nenfalls Fossilien zu sammeln. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Bevorzugte Ziele ein- und zweitägiger Exkursionen sind: Jura der Nordschweiz und von Süddeutschland. Kreide des westlichen Juragebirges und des Helvetikums. Mesozoikum des Südtessins, speziell des Monte San Giorgio. Molasse der weiteren Umgebung von Zürich. Ziele mehrtägiger Exkursionen sind u. a.: Mesozoikum und Tertiär der Südalpen. Tertiär des Wiener Beckens. Paläozoikum der Eifel, des Barrandiums, von Gotland und von Wales. Jura von Südengland. Jura und Kreide von Südfrankreich. Paläozoikum und Mesozoikum in Spanien. Aktuopaläontologie im Watt der Nordsee. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4901-00L | Quaternary Dating Methods ![]() | W | 3 credits | 2G | I. Hajdas, M. Christl, S. Ivy Ochs | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Reconstruction of time scales is critical for all Quaternary studies in both Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture, we focus on the last 50 ka and the methods that are most frequently used for dating Quaternary sediments and landforms in this time range. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students will be made familiar with the details of the six dating methods through lectures on basic principles, analysis of case studies, solving of problem sets for age calculation and visits to dating laboratories. At the end of the course students will: 1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies. 2. be able to calculate an age based on data of the six methods studied. 3. choose which dating method (or combination of methods) is suitable for a certain field problem. 4. critically read and evaluate the application of dating methods in scientific publications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Introduction: Time scales for the Quaternary, Isotopes and decay 2. Radiocarbon dating: principles and applications 3. Cosmogenic nuclides: 3He,10Be, 14C, 21Ne, 26Cl, 36Cl 4. U-series disequilibrium dating 5. Luminescence dating 6. Introduction to incremental: varve counting, dendrochronology and ice cores chronologies 7. Cs-137 and Pb-210 (soil, sediments, ice core) 8. Summary and comparison of results from several dating methods at specific sites | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Visit to radiocarbon lab, cosmogenic nuclide lab, accelerator (AMS) facility. Visit to Limno Lab and sampling a sediment core Optional (individual): 1-5 days hands-on radiocarbon dating at the C14 lab at ETH Hoenggerebrg Required: attending the lecture, visiting laboratories, handing back solutions for problem sets (Exercises) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4077-00L | Quantification and Modeling of the Cryosphere: Dynamic Processes (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: GEO815 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W | 3 credits | 1V | University lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Overview of the most important earth surface processes and landforms in cold regions (regions with glaciers and intense frost) with emphasis on high-mountain aspects. Discussion of present research challenges. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowledge of the most prominent climate-related geomorphological processes and phenomena in high-mountain regions, understanding of primary research challenges. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Erosion and sedimentation by glaciers as a function of topography, englacial temperature, sediment balance, sliding and melt water runoff. Processes and landforms in regions of seasonal and perennial frost (frost weathering, rock falls, debris cones/talus, solifluction, permafrost creep/rock glaciers, debris flows). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Glacial and periglacial geomorphodynamics in high-mountain regions. Ca. 100 pages. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | references in skript | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic knowledge about geomorphology and glaciers/permafrost from corresponding courses at ETH/UZH or from the related lecture notes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() The courses of this module are offered by UZH and must be registered at UZH. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4263-00L | Remote Sensing and Geographic Information Science V (University of Zürich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: GEO371 Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W+ | 5 credits | 2V + 2U | University lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4269-00L | Specialisation in Remote Sensing: Spectroscopy of the Earth System (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: GEO442 Prerequisite: Remote Sensing Methods (UZH Module Code: GEO371) Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W | 6 credits | 2V + 2U | University lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4257-00L | Specialisation in Remote Sensing: SAR and LIDAR (University of Zurich) No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH as an incoming student. UZH Module Code: GEO443 Prerequisite: Remote Sensing Methods (UZH Module Code: GEO0371) Mind the enrolment deadlines at UZH: https://www.uzh.ch/cmsssl/en/studies/application/deadlines.html | W | 6 credits | 2V + 2U | University lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() Courses are only offered in spring semester. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
» Choice from Engineering Geology Required Modules | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
» Choice from Geophysics Compulsory Modules | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
» Choice from Geophysics Restricted Choice Modules | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
» Choice from the Mineralogy and Geochemistry Restricted Choice Modules | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
» Choice from the Geology Restricted Choice Modules |