Suchergebnis: Katalogdaten im Frühjahrssemester 2018

CAS in Informatik Information
Fokusfächer und Wahlfächer
NummerTitelTypECTSUmfangDozierende
227-0558-00LPrinciples of Distributed Computing Information W6 KP2V + 2U + 1AR. Wattenhofer, M. Ghaffari
KurzbeschreibungWe study the fundamental issues underlying the design of distributed systems: communication, coordination, fault-tolerance, locality, parallelism, self-organization, symmetry breaking, synchronization, uncertainty. We explore essential algorithmic ideas and lower bound techniques.
LernzielDistributed computing is essential in modern computing and communications systems. Examples are on the one hand large-scale networks such as the Internet, and on the other hand multiprocessors such as your new multi-core laptop. This course introduces the principles of distributed computing, emphasizing the fundamental issues underlying the design of distributed systems and networks: communication, coordination, fault-tolerance, locality, parallelism, self-organization, symmetry breaking, synchronization, uncertainty. We explore essential algorithmic ideas and lower bound techniques, basically the "pearls" of distributed computing. We will cover a fresh topic every week.
InhaltDistributed computing models and paradigms, e.g. message passing, shared memory, synchronous vs. asynchronous systems, time and message complexity, peer-to-peer systems, small-world networks, social networks, sorting networks, wireless communication, and self-organizing systems.

Distributed algorithms, e.g. leader election, coloring, covering, packing, decomposition, spanning trees, mutual exclusion, store and collect, arrow, ivy, synchronizers, diameter, all-pairs-shortest-path, wake-up, and lower bounds
SkriptAvailable. Our course script is used at dozens of other universities around the world.
LiteraturLecture Notes By Roger Wattenhofer. These lecture notes are taught at about a dozen different universities through the world.

Distributed Computing: Fundamentals, Simulations and Advanced Topics
Hagit Attiya, Jennifer Welch.
McGraw-Hill Publishing, 1998, ISBN 0-07-709352 6

Introduction to Algorithms
Thomas Cormen, Charles Leiserson, Ronald Rivest.
The MIT Press, 1998, ISBN 0-262-53091-0 oder 0-262-03141-8

Disseminatin of Information in Communication Networks
Juraj Hromkovic, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, Walter Unger.
Springer-Verlag, Berlin Heidelberg, 2005, ISBN 3-540-00846-2

Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes
Frank Thomson Leighton.
Morgan Kaufmann Publishers Inc., San Francisco, CA, 1991, ISBN 1-55860-117-1

Distributed Computing: A Locality-Sensitive Approach
David Peleg.
Society for Industrial and Applied Mathematics (SIAM), 2000, ISBN 0-89871-464-8
Voraussetzungen / BesonderesCourse pre-requisites: Interest in algorithmic problems. (No particular course needed.)
227-1034-00LComputational Vision (University of Zurich) Information
No enrolment to this course at ETH Zurich. Book the corresponding module directly at UZH.
UZH Module Code: INI402

Mind the enrolment deadlines at UZH:
https://www.uzh.ch/cmsssl/en/studies/application/mobilitaet.html
W6 KP2V + 1UD. Kiper, K. A. Martin
KurzbeschreibungThis course focuses on neural computations that underlie visual perception. We study how visual signals are processed in the retina, LGN and visual cortex. We study the morpholgy and functional architecture of cortical circuits responsible for pattern, motion, color, and three-dimensional vision.
LernzielThis course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed.
The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will
be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered.
InhaltThis course considers the operation of circuits in the process of neural computations. The evolution of neural systems will be considered to demonstrate how neural structures and mechanisms are optimised for energy capture, transduction, transmission and representation of information. Canonical brain circuits will be described as models for the analysis of sensory information. The concept of receptive fields will be introduced and their role in coding spatial and temporal information will be considered. The constraints of the bandwidth of neural channels and the mechanisms of normalization by neural circuits will be discussed.
The visual system will form the basis of case studies in the computation of form, depth, and motion. The role of multiple channels and collective computations for object recognition will
be considered. Coordinate transformations of space and time by cortical and subcortical mechanisms will be analysed. The means by which sensory and motor systems are integrated to allow for adaptive behaviour will be considered.
LiteraturBooks: (recommended references, not required)
1. An Introduction to Natural Computation, D. Ballard (Bradford Books, MIT Press) 1997.
2. The Handbook of Brain Theorie and Neural Networks, M. Arbib (editor), (MIT Press) 1995.
252-0312-00LUbiquitous Computing Information W3 KP2VF. Mattern, S. Mayer
KurzbeschreibungUbiquitous computing integrates tiny wirelessly connected computers and sensors into the environment and everyday objects. Main topics: The vision of ubiquitous computing, trends in technology, smart cards, RFID, Personal Area Networks (Bluetooth), sensor networks, location awareness, privacy and security, application areas, economic and social impact.
LernzielThe vision of ubiquitous computing, trends in technology, smart cards, RFID, Personal Area Networks (Bluetooth), sensor networks, location awareness, privacy and security, application areas, economic and social impact.
SkriptCopies of slides will be made available
LiteraturWill be provided in the lecture. To put you in the mood:
Mark Weiser: The Computer for the 21st Century. Scientific American, September 1991, pp. 94-104
252-0355-00LObject Databases Information W4 KP2V + 1UA. K. de Spindler
KurzbeschreibungThe course examines the principles and techniques of providing data management in object-oriented programming environments. After introducing the basics of object storage and management, we will cover semantic object models and their implementation. Finally, we discuss advanced data management services such as version models for temporal and engineering databases and for software configuration.
LernzielThe goal of this course is to extend the student's knowledge of database technologies towards object-oriented solutions. Starting with basic principles, students also learn about commercial products and research projects in the domain of object-oriented data management. Apart from getting to know the characteristics of these approaches and the differences between them, the course also discusses what application requirements justify the use of object-oriented databases. Therefore, it educates students to make informed decisions on when to use what database technology.
InhaltThe course examines the principles and techniques of providing data management in object-oriented programming environments. It is divided into three parts that cover the road from simple object persistence, to object-oriented database management systems and to advanced data management services. In the first part, object serialisation and object-relational mapping frameworks will be introduced. Using the example of the open-source project db4o, the utilisation, architecture and functionality of a simple object-oriented database is discussed. The second part of the course is dedicated to advanced topics such as industry standards and solutions for object data management as well as storage and index technologies. Additionally, advanced data management services such as version models for temporal and engineering databases as well as for software configuration are discussed. In the third and last part of the course, an object-oriented data model that features a clear separation of typing and classification is presented. Together with the model, its implementation in terms of an object-oriented database management system is discussed also. Finally, an extension of this data model is presented that allows context-aware data to be managed.
Voraussetzungen / BesonderesPrerequisites: Knowledge about the topics of the lectures "Introduction to Databases" and "Information Systems" is required.
252-0407-00LCryptography Foundations Information W7 KP3V + 2U + 1AU. Maurer
KurzbeschreibungFundamentals and applications of cryptography. Cryptography as a mathematical discipline: reductions, constructive cryptography paradigm, security proofs. The discussed primitives include cryptographic functions, pseudo-randomness, symmetric encryption and authentication, public-key encryption, key agreement, and digital signature schemes. Selected cryptanalytic techniques.
LernzielThe goals are:
(1) understand the basic theoretical concepts and scientific thinking in cryptography;
(2) understand and apply some core cryptographic techniques and security proof methods;
(3) be prepared and motivated to access the scientific literature and attend specialized courses in cryptography.
InhaltSee course description.
Skriptyes.
Voraussetzungen / BesonderesFamiliarity with the basic cryptographic concepts as treated for
example in the course "Information Security" is required but can
in principle also be acquired in parallel to attending the course.
252-0526-00LStatistical Learning Theory Information W6 KP2V + 3PJ. M. Buhmann
KurzbeschreibungThe course covers advanced methods of statistical learning :
Statistical learning theory;variational methods and optimization, e.g., maximum entropy techniques, information bottleneck, deterministic and simulated annealing; clustering for vectorial, histogram and relational data; model selection; graphical models.
LernzielThe course surveys recent methods of statistical learning. The fundamentals of machine learning as presented in the course "Introduction to Machine Learning" are expanded and in particular, the theory of statistical learning is discussed.
Inhalt# Theory of estimators: How can we measure the quality of a statistical estimator? We already discussed bias and variance of estimators very briefly, but the interesting part is yet to come.

# Variational methods and optimization: We consider optimization approaches for problems where the optimizer is a probability distribution. Concepts we will discuss in this context include:

* Maximum Entropy
* Information Bottleneck
* Deterministic Annealing

# Clustering: The problem of sorting data into groups without using training samples. This requires a definition of ``similarity'' between data points and adequate optimization procedures.

# Model selection: We have already discussed how to fit a model to a data set in ML I, which usually involved adjusting model parameters for a given type of model. Model selection refers to the question of how complex the chosen model should be. As we already know, simple and complex models both have advantages and drawbacks alike.

# Statistical physics models: approaches for large systems approximate optimization, which originate in the statistical physics (free energy minimization applied to spin glasses and other models); sampling methods based on these models
SkriptA draft of a script will be provided;
transparencies of the lectures will be made available.
LiteraturHastie, Tibshirani, Friedman: The Elements of Statistical Learning, Springer, 2001.

L. Devroye, L. Gyorfi, and G. Lugosi: A probabilistic theory of pattern recognition. Springer, New York, 1996
Voraussetzungen / BesonderesRequirements:

knowledge of the Machine Learning course
basic knowledge of statistics, interest in statistical methods.

It is recommended that Introduction to Machine Learning (ML I) is taken first; but with a little extra effort Statistical Learning Theory can be followed without the introductory course.
252-0538-00LShape Modeling and Geometry Processing Information W5 KP2V + 1U + 1AS. Coros
KurzbeschreibungThis course covers some of the latest developments in geometric modeling and digital geometry processing. Topics include surface modeling based on polygonal meshes, mesh generation, surface reconstruction, mesh fairing and simplification, discrete differential geometry, interactive shape editing, topics in digital shape fabrication.
LernzielThe students will learn how to design, program and analyze algorithms and systems for interactive 3D shape modeling and digital geometry processing.
InhaltRecent advances in 3D digital geometry processing have created a plenitude of novel concepts for the mathematical representation and interactive manipulation of geometric models. This course covers some of the latest developments in geometric modeling and digital geometry processing. Topics include surface modeling based on triangle meshes, mesh generation, surface reconstruction, mesh fairing and simplification, discrete differential geometry, interactive shape editing and digital shape fabrication.
SkriptSlides and course notes
Voraussetzungen / BesonderesPrerequisites:
Visual Computing, Computer Graphics or an equivalent class. Experience with C++ programming. Some background in geometry or computational geometry is helpful, but not necessary.
252-0579-00L3D Vision Information W4 KP3GT. Sattler, M. R. Oswald
KurzbeschreibungThe course covers camera models and calibration, feature tracking and matching, camera motion estimation via simultaneous localization and mapping (SLAM) and visual odometry (VO), epipolar and mult-view geometry, structure-from-motion, (multi-view) stereo, augmented reality, and image-based (re-)localization.
LernzielAfter attending this course, students will:
1. understand the core concepts for recovering 3D shape of objects and scenes from images and video.
2. be able to implement basic systems for vision-based robotics and simple virtual/augmented reality applications.
3. have a good overview over the current state-of-the art in 3D vision.
4. be able to critically analyze and asses current research in this area.
InhaltThe goal of this course is to teach the core techniques required for robotic and augmented reality applications: How to determine the motion of a camera and how to estimate the absolute position and orientation of a camera in the real world. This course will introduce the basic concepts of 3D Vision in the form of short lectures, followed by student presentations discussing the current state-of-the-art. The main focus of this course are student projects on 3D Vision topics, with an emphasis on robotic vision and virtual and augmented reality applications.
252-0820-00LCase Studies from Practice Information W4 KP2V + 1UM. Brandis
KurzbeschreibungThe course is designed to provide students with an understanding of "real-life" computer science challenges in business settings and teach them how to address these.
LernzielBy using case studies that are based on actual IT projects, students will learn how to deal with complex, not straightforward problems. It will help them to apply their theoretical Computer Science background in practice and will teach them fundamental principles of IT management and challenges with IT in practice.
A particular focus is to make the often imprecise and fuzzy problems in practice accessible to factual analysis and reasoning, and to challenge "common wisdom" and hearsay.
InhaltThe course consists of multiple lectures on methods to systematically analyze problems in a business setting and communicate about them as well as IT management and IT economics, presented by the lecturer, and a number of case studies provided by guest lecturers from either IT companies or IT departments of a diverse range of companies. Students will obtain insights into both established and startup companies, small and big, and different industries.
Presenting companies have included avaloq, Accenture, AdNovum, Bank Julius Bär, Credit Suisse, Deloitte, HP, Hotelcard, IBM Research, McKinsey & Company, Open Web Technology, SAP Research, Selfnation, SIX Group, Teralytics, 28msec, Zühlke and dormakaba, and Marc Brandis Strategic Consulting. The participating companies in spring 2017 will be announced at course start.
252-1403-00LInvitation to Quantum Informatics Information W3 KP2VS. Wolf
KurzbeschreibungNach einer Einführung wichtiger Grundbegriffe der Quantenphysik, wie etwa Überlagerung, Interferenz und Verschränkung, werden verschiedene Themen behandelt: Quantenalgorithmen, Teleportation, Quanten-Kommunikationskomplexität und "Pseudo-Telepathie", Quantenkryptographie sowie die Grundzüge der Quanten-Informationstheorie.
LernzielDas Ziel dieser Vorlesung ist es, mit den wichtigsten Begriffen vetraut zu werden,
welche fuer die Verbindung zwischen Information und Physik wichtig sind. Der Grundformalismus des Quantenphysik soll erarbeitet, und der Einsatz der entsprechenden Gesetze fuer die Informationsverarbeitung verstanden werden. Insbesondere sollen wichtige Algorithmen dargelegt und analysiert werden, wie der Grover- sowie der Shor-Algorithmus.
InhaltGemäss Landauer kann Information und ihre Verarbeitung nicht völlig losgelöst von der physikalischen Repräsentation betrachtet werden. Die Quanteninformatik befasst sich mit den Konsequenzen und Möglichkeiten der quantenphysikalischen Gesetze für die Informationsverarbeitung. Nach einer Einführung wichtiger Grundbegriffe der Quantenphysik, wie etwa Überlagerung, Interferenz und Verschränkung, werden verschiedene Themen behandelt: Quantenalgorithmen, Teleportation, Quanten-Kommunikationskomplexität und "Pseudo-Telepathie", Quantenkryptographie sowie die Grundzüge der Quanten-Informationstheorie.
252-1424-00LModels of ComputationW6 KP2V + 2U + 1AM. Cook
KurzbeschreibungThis course surveys many different models of computation: Turing Machines, Cellular Automata, Finite State Machines, Graph Automata, Circuits, Tilings, Lambda Calculus, Fractran, Chemical Reaction Networks, Hopfield Networks, String Rewriting Systems, Tag Systems, Diophantine Equations, Register Machines, Primitive Recursive Functions, and more.
LernzielThe goal of this course is to become acquainted with a wide variety of models of computation, to understand how models help us to understand the modeled systems, and to be able to develop and analyze models appropriate for new systems.
InhaltThis course surveys many different models of computation: Turing Machines, Cellular Automata, Finite State Machines, Graph Automata, Circuits, Tilings, Lambda Calculus, Fractran, Chemical Reaction Networks, Hopfield Networks, String Rewriting Systems, Tag Systems, Diophantine Equations, Register Machines, Primitive Recursive Functions, and more.
252-3005-00LNatural Language Understanding Information W4 KP2V + 1UT. Hofmann, M. Ciaramita
KurzbeschreibungThis course presents topics in natural language processing with an emphasis on modern techniques, primarily focusing on statistical and deep learning approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.
LernzielThe objective of the course is to learn the basic concepts in the statistical processing of natural languages. The course will be project-oriented so that the students can also gain hands-on experience with state-of-the-art tools and techniques.
InhaltThis course presents an introduction to general topics and techniques used in natural language processing today, primarily focusing on statistical approaches. The course provides an overview of the primary areas of research in language processing as well as a detailed exploration of the models and techniques used both in research and in commercial natural language systems.
LiteraturLectures will make use of textbooks such as the one by Jurafsky and Martin where appropriate, but will also make use of original research and survey papers.
252-5706-00LMathematical Foundations of Computer Graphics and Vision Information W4 KP2V + 1UM. R. Oswald, C. Öztireli
KurzbeschreibungThis course presents the fundamental mathematical tools and concepts used in computer graphics and vision. Each theoretical topic is introduced in the context of practical vision or graphic problems, showcasing its importance in real-world applications.
LernzielThe main goal is to equip the students with the key mathematical tools necessary to understand state-of-the-art algorithms in vision and graphics. In addition to the theoretical part, the students will learn how to use these mathematical tools to solve a wide range of practical problems in visual computing. After successfully completing this course, the students will be able to apply these mathematical concepts and tools to practical industrial and academic projects in visual computing.
InhaltThe theory behind various mathematical concepts and tools will be introduced, and their practical utility will be showcased in diverse applications in computer graphics and vision. The course will cover topics in sampling, reconstruction, approximation, optimization, robust fitting, differentiation, quadrature and spectral methods. Applications will include 3D surface reconstruction, camera pose estimation, image editing, data projection, character animation, structure-aware geometry processing, and rendering.
261-5110-00LOptimization for Data Science Information W8 KP3V + 2U + 2AB. Gärtner, D. Steurer
KurzbeschreibungThis course teaches an overview of modern optimization methods, with applications in particular for machine learning and data science.
LernzielUnderstanding the theoretical and practical aspects of relevant optimization methods used in data science. Learning general paradigms to deal with optimization problems arising in data science.
InhaltThis course teaches an overview of modern optimization methods, with applications in particular for machine learning and data science.

In the first part of the course, we will discuss how classical first and second order methods such as gradient descent and Newton's method can be adapated to scale to large datasets, in theory and in practice. We also cover some new algorithms and paradigms that have been developed specifically in the context of data science. The emphasis is not so much on the application of these methods (many of which are covered in other courses), but on understanding and analyzing the methods themselves.

In the second part, we discuss convex programming relaxations as a powerful and versatile paradigm for designing efficient algorithms to solve computational problems arising in data science. We will learn about this paradigm and develop a unified perspective on it through the lens of the sum-of-squares semidefinite programming hierarchy. As applications, we are discussing non-negative matrix factorization, compressed sensing and sparse linear regression, matrix completion and phase retrieval, as well as robust estimation.
Voraussetzungen / BesonderesAs background, we require material taught in the course "252-0209-00L Algorithms, Probability, and Computing". It is not necessary that participants have actually taken the course, but they should be prepared to catch up if necessary.
263-2300-00LHow To Write Fast Numerical Code Information Belegung eingeschränkt - Details anzeigen
Findet dieses Semester nicht statt.
Number of participants limited to 84.

Prerequisite: Master student, solid C programming skills.
W6 KP3V + 2UM. Püschel
KurzbeschreibungThis course introduces the student to the foundations and state-of-the-art techniques in developing high performance software for numerical functionality such as linear algebra and others. The focus is on optimizing for the memory hierarchy and for special instruction sets. Finally, the course will introduce the recent field of automatic performance tuning.
LernzielSoftware performance (i.e., runtime) arises through the interaction of algorithm, its implementation, and the microarchitecture the program is run on. The first goal of the course is to provide the student with an understanding of this interaction, and hence software performance, focusing on numerical or mathematical functionality. The second goal is to teach a general systematic strategy how to use this knowledge to write fast software for numerical problems. This strategy will be trained in a few homeworks and semester-long group projects.
InhaltThe fast evolution and increasing complexity of computing platforms pose a major challenge for developers of high performance software for engineering, science, and consumer applications: it becomes increasingly harder to harness the available computing power. Straightforward implementations may lose as much as one or two orders of magnitude in performance. On the other hand, creating optimal implementations requires the developer to have an understanding of algorithms, capabilities and limitations of compilers, and the target platform's architecture and microarchitecture.

This interdisciplinary course introduces the student to the foundations and state-of-the-art techniques in high performance software development using important functionality such as linear algebra functionality, transforms, filters, and others as examples. The course will explain how to optimize for the memory hierarchy, take advantage of special instruction sets, and, if time permits, how to write multithreaded code for multicore platforms. Much of the material is based on state-of-the-art research.

Further, a general strategy for performance analysis and optimization is introduced that the students will apply in group projects that accompany the course. Finally, the course will introduce the students to the recent field of automatic performance tuning.
263-2812-00LProgram Verification Information Belegung eingeschränkt - Details anzeigen
Maximale Teilnehmerzahl: 30.
W5 KP2V + 1U + 1AA. J. Summers
KurzbeschreibungA hands-on introduction to the theory and construction of deductive software verifiers, covering both cutting-edge methodologies for formal program reasoning, and a perspective over the broad tool stacks making up modern verification tools.
LernzielStudents will earn the necessary skills for designing and developing deductive verification tools which can be applied to modularly analyse complex software, including features challenging for reasoning such as heap-based mutable data and concurrency. Students will learn both a variety of fundamental reasoning principles, and how these reasoning ideas can be made practical via automatic tools.

Students will be gain practical experience with reasoning tools at various levels of abstraction, from SAT and SMT solvers at the lowest level, up through intermediate verification languages and tools, to verifiers which target front-end code in executable languages.

By the end of the course, students should have a good working understanding and experience of the issues and decisions involved with designing and building practical verification tools, and the theoretical techniques which underpin them.
InhaltThe course will be organized around building up a "tool stack", starting at the lowest-level with background on SAT and SMT solving techniques, and working upwards through tools at progressively-higher levels of abstraction. The notion of intermediate verification languages will be explored, and the Boogie (Microsoft Research) and Viper (ETH) languages will be used in depth to tackle increasingly ambitious verification tasks.

The course will intermix technical content with hands-on experience; at each level of abstraction, we will build small tools on top which can tackle specific program correctness problems, starting from simple puzzle solvers (Soduko) at the SAT level, and working upwards to full functional correctness of application-level code. This practical work will include three mini-projects (each worth 10% of the final grade) spread throughout the course, which count towards the final grade. An oral examination (worth 70% of the final grade) will cover the technical content covered.
SkriptSlides and other materials will be available online.
LiteraturBackground reading material and links to tools will be published on the course website.
Voraussetzungen / BesonderesSome programming experience is essential, as the course contains several practical assignments. A basic familiarity with propositional and first-order logic will be assumed.

Courses with an emphasis on formal reasoning about programs (such as Formal Methods and Functional Programming) are advantageous background, but are not a requirement.
263-2925-00LProgram Analysis for System Security and Reliability Information W5 KP2V + 1U + 1AM. Vechev
KurzbeschreibungThe course introduces modern analysis and synthesis techniques (both, deterministic and probabilistic) and shows how to apply these methods to build reliable and secure systems spanning the domains of blockchain, computer networks and deep learning.
Lernziel* Understand how classic analysis and synthesis techniques work, including discrete and probabilistic methods.

* Understand how to apply the methods to generate attacks and create defenses against applications in blockchain, computer networks and deep learning.

* Understand the state-of-the-art in the area as well as future trends.
InhaltThe course will illustrate how the methods can be used to create more secure and reliable systems across four application domains:

Part I: Analysis and Synthesis for Computer Networks:
1. Analysis: Datalog, Batfish
2. Synthesis: CEGIS, SyNET (http://synet.ethz.ch)
3. Probabilistic: (PSI: http://psisolver.org), its applications to networks (Bayonet)

Part II: Blockchain security
1. Introduction to space and tools.
2. Automated symbolic reasoning.
3. Applications: verification of smart contracts (http://www.securify.ch)

Part III: Security and Robustness of Deep Learning:
1. Basics: affine transforms, activation functions
2. Attacks: gradient based method to adversarial generation
3. Defenses: affine domains, AI2 (http://ai2.ethz.ch)

Part IV: Probabilistic Security:
1. Enforcement: PSI + Spire.
2. Graphical models: CRFs, Structured SVM, Pseudo-likelihood.
3. Practical statistical de-obfuscation: DeGuard: http://apk-deguard.com, JSNice: http://jsnice.org, and more.

To gain a deeper understanding, the course will involve a hands-on programming project.
263-3501-00LAdvanced Computer Networks Information W5 KP2V + 2UA. Singla, P. M. Stüdi
KurzbeschreibungThis course covers a set of advanced topics in computer networks. The focus is on principles, architectures, and protocols used in modern networked systems, such as the Internet and data center networks.
LernzielThe goals of the course are to build on basic undergraduate-level networking, and provide an understanding of the tradeoffs and existing technology in the design of large, complex networked systems, together with concrete experience of the challenges through a series of lab exercises.
InhaltThe focus of the course is on principles, architectures, and protocols used in modern networked systems. Topics include data center network topologies, software defined networking, network function virtualization, flow control and congestion control in data centers, end-point optimizations, and server virtualization.
263-3710-00LMachine Perception Information Belegung eingeschränkt - Details anzeigen
Students, who have already taken 263-3700-00 User Interface Engineering are not allowed to register for this course!
W5 KP2V + 1U + 1AO. Hilliges
KurzbeschreibungRecent developments in neural network (aka “deep learning”) have drastically advanced the performance of machine perception systems in a variety of areas including drones, self-driving cars and intelligent UIs. This course is a deep dive into details of the deep learning algorithms and architectures for a variety of perceptual tasks.
LernzielStudents will learn about fundamental aspects of modern deep learning approaches for perception. Students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in learning-based computer vision, robotics and HCI. The final project assignment will involve training a complex neural network architecture and applying it on a real-world dataset of human motion.

The core competency acquired through this course is a solid foundation in deep-learning algorithms to process and interpret human input into computing systems. In particular, students should be able to develop systems that deal with the problem of recognizing people in images, detecting and describing body parts, inferring their spatial configuration, performing action/gesture recognition from still images or image sequences, also considering multi-modal data, among others.
InhaltWe will focus on teaching how to set up the problem of machine perception, the learning algorithms (e.g. backpropagation), practical engineering aspects as well as advanced deep learning algorithms including generative models.

The course covers the following main areas:
I) Machine-learning algorithms for input recognition, computer vision and image classification (human pose, object detection, gestures, etc.)
II) Deep-learning models for the analysis of time-series data (temporal sequences of motion)
III) Learning of generative models for synthesis and prediction of human activity.

Specific topics include: 
• Deep learning basics:
○ Neural Networks and training (i.e., backpropagation)
○ Feedforward Networks
○ Recurrent Neural Networks
• Deep Learning techniques user input recognition:
○ Convolutional Neural Networks for classification
○ Fully Convolutional architectures for dense per-pixel tasks (i.e., segmentation)
○ LSTMs & related for time series analysis
○ Generative Models (GANs, Variational Autoencoders)
• Case studies from research in computer vision, HCI, robotics and signal processing
LiteraturDeep Learning
Book by Ian Goodfellow and Yoshua Bengio
Voraussetzungen / BesonderesThis is an advanced grad-level course that requires a background in machine learning. Students are expected to have a solid mathematical foundation, in particular in linear algebra, multivariate calculus, and probability. The course will focus on state-of-the-art research in deep-learning and is not meant as extensive tutorial of how to train deep networks with Tensorflow..

Please take note of the following conditions:
1) The number of participants is limited to 100 students (MSc and PhDs).
2) Students must have taken the exam in Machine Learning (252-0535-00) or have acquired equivalent knowledge
3) All practical exercises will require basic knowledge of Python and will use libraries such as TensorFlow, scikit-learn and scikit-image. We will provide introductions to TensorFlow and other libraries that are needed but will not provide introductions to basic programming or Python.

The following courses are strongly recommended as prerequisite:
* "Machine Learning"
* "Visual Computing" or "Computer Vision"

The course will be assessed by a final written examination in English. No course materials or electronic devices can be used during the examination. Note that the examination will be based on the contents of the lectures, the associated reading materials and the exercises.
263-4310-00LLinear Algebra Methods in Combinatorics Information W5 KP2V + 2UP. Penna
KurzbeschreibungThis course describes the linear algebra bound technique also called dimension argument. To learn the technique we discuss several examples in combinatorics, geometry, and computer science. Besides this technique, the course aims at showing the mathematical elegance of certain proofs and the simplicity of the statements.
LernzielBecoming familiar with the method and being able to apply it to problems similar to those encountered during the course.
InhaltThis course is (essentially) about one single technique called the "linear algebra bound" (also known as "dimension argument"). We shall see several examples in combinatorics, geometry, and computer science and learn the technique throughout these examples. Towards the end of the course, we shall see the power of this method in proving rather amazing results (e.g., a circuit complexity lower bound, explicit constructions of Ramsey graphs, and a famous conjecture in geometry disproved). The course also aims at illustrating the main ideas behind the proofs and how the various problems are in fact connected to each other.
SkriptLecture notes of each single lecture will be made available (shortly after the lecture itself).
LiteraturMost of the material of the course is covered by the following book:

1. Linear algebra methods in combinatorics, by L. Babai and P. Frankl, Department of Computer Science, University of Chicago, preliminary version, 1992.

Some parts are also taken from

2. Extremal Combinatorics (with Applications in Computer Science), by Stasys Jukna, Springer-Verlag 2001.
  •  Seite  1  von  3 Nächste Seite Letzte Seite     Alle