Suchergebnis: Katalogdaten im Herbstsemester 2019
Informatik Lehrdiplom Weitere Informationen: Link | ||||||
Fachwiss. Vertiefung mit pädagogischem Fokus und weitere Fachdidaktik | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
272-0400-00L | Mentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Informatik A | O | 2 KP | 4A | J. Hromkovic, G. Serafini | |
Kurzbeschreibung | In der mentorierten Arbeit in FV verknüpfen die Studierenden gymnasiale und universitäre Aspekte des Fachs mit dem Ziel, ihre Lehrkompetenz im Hinblick auf curriculare Entscheidungen und auf die zukünftige Entwicklung des Unterrichts zu stärken. Angeleitet erstellen sie Texte, welche die anvisierte Leserschaft, in der Regel gymnasiale Fachlehrpersonen, unmittelbar verstehen. | |||||
Lernziel | Das Ziel ist, dass die Studierenden - sich in ein neues Thema einarbeiten, indem sie Materialien beschaffen und die Quellen studieren und so ihre Fachkompetenz gezielt erweitern können. - selbständig einen Text über den Gegenstandentwickeln und dabei einen speziellen Fokus auf die mathematische Verständlichkeit in Bezug auf den Kenntnisstand der anvisierten Leser/Leserinnen legen können. - Möglichkeiten berufsbezogener fachlicher Weiterbildung ausprobieren. | |||||
Inhalt | Thematische Schwerpunkte: Die mentorierte Arbeit in FV besteht in der Regel in einer Literaturarbeit über ein Thema, das einen Bezug zum gymnasialem Unterricht oder seiner Weiterentwicklung hat. Die Studierenden setzen darin Erkenntnisse aus den Vorlesungen in FV praktisch um. Lernformen: Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden. | |||||
Literatur | Die Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt. | |||||
Voraussetzungen / Besonderes | Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden. | |||||
272-0401-00L | Mentorierte Arbeit Fachwissenschaftliche Vertiefung mit pädagogischem Fokus Informatik B | O | 2 KP | 4A | J. Hromkovic, G. Serafini | |
Kurzbeschreibung | In der mentorierten Arbeit in FV verknüpfen die Studierenden gymnasiale und universitäre Aspekte des Fachs mit dem Ziel, ihre Lehrkompetenz im Hinblick auf curriculare Entscheidungen und auf die zukünftige Entwicklung des Unterrichts zu stärken. Angeleitet erstellen sie Texte, welche die anvisierte Leserschaft, in der Regel gymnasiale Fachlehrpersonen, unmittelbar verstehen. | |||||
Lernziel | Das Ziel ist, dass die Studierenden - sich in ein neues Thema einarbeiten, indem sie Materialien beschaffen und die Quellen studieren und so ihre Fachkompetenz gezielt erweitern können. - selbständig einen Text über den Gegenstandentwickeln und dabei einen speziellen Fokus auf die mathematische Verständlichkeit in Bezug auf den Kenntnisstand der anvisierten Leser/Leserinnen legen können. - Möglichkeiten berufsbezogener fachlicher Weiterbildung ausprobieren. | |||||
Inhalt | Thematische Schwerpunkte: Die mentorierte Arbeit in FV besteht in der Regel in einer Literaturarbeit über ein Thema, das einen Bezug zum gymnasialem Unterricht oder seiner Weiterentwicklung hat. Die Studierenden setzen darin Erkenntnisse aus den Vorlesungen in FV praktisch um. Lernformen: Alle Studierenden erhalten ein individuelles Thema und erstellen dazu eine eigenständige Arbeit. Sie werden dabei von ihrer Betreuungsperson begleitet. Gegebenenfalls stellen sie ihre Arbeit oder Aspekte daraus in einem Kurzvortrag vor. Die mentorierte Arbeit ist Teil des Portfolios der Studierenden. | |||||
Literatur | Die Literatur ist themenspezifisch. Sie muss je nach Situation selber beschafft werden oder wird zur Verfügung gestellt. | |||||
Voraussetzungen / Besonderes | Die Arbeit sollte vor Beginn des Praktikums abgeschlossen werden. | |||||
252-0237-00L | Concepts of Object-Oriented Programming | W | 8 KP | 3V + 2U + 2A | P. Müller | |
Kurzbeschreibung | Course that focuses on an in-depth understanding of object-oriented programming and compares designs of object-oriented programming languages. Topics include different flavors of type systems, inheritance models, encapsulation in the presence of aliasing, object and class initialization, program correctness, reflection | |||||
Lernziel | After this course, students will: Have a deep understanding of advanced concepts of object-oriented programming and their support through various language features. Be able to understand language concepts on a semantic level and be able to compare and evaluate language designs. Be able to learn new languages more rapidly. Be aware of many subtle problems of object-oriented programming and know how to avoid them. | |||||
Inhalt | The main goal of this course is to convey a deep understanding of the key concepts of sequential object-oriented programming and their support in different programming languages. This is achieved by studying how important challenges are addressed through language features and programming idioms. In particular, the course discusses alternative language designs by contrasting solutions in languages such as C++, C#, Eiffel, Java, Python, and Scala. The course also introduces novel ideas from research languages that may influence the design of future mainstream languages. The topics discussed in the course include among others: The pros and cons of different flavors of type systems (for instance, static vs. dynamic typing, nominal vs. structural, syntactic vs. behavioral typing) The key problems of single and multiple inheritance and how different languages address them Generic type systems, in particular, Java generics, C# generics, and C++ templates The situations in which object-oriented programming does not provide encapsulation, and how to avoid them The pitfalls of object initialization, exemplified by a research type system that prevents null pointer dereferencing How to maintain the consistency of data structures | |||||
Literatur | Will be announced in the lecture. | |||||
Voraussetzungen / Besonderes | Prerequisites: Mastering at least one object-oriented programming language (this course will NOT provide an introduction to object-oriented programming); programming experience | |||||
252-0417-00L | Randomized Algorithms and Probabilistic Methods | W | 8 KP | 3V + 2U + 2A | A. Steger | |
Kurzbeschreibung | Las Vegas & Monte Carlo algorithms; inequalities of Markov, Chebyshev, Chernoff; negative correlation; Markov chains: convergence, rapidly mixing; generating functions; Examples include: min cut, median, balls and bins, routing in hypercubes, 3SAT, card shuffling, random walks | |||||
Lernziel | After this course students will know fundamental techniques from probabilistic combinatorics for designing randomized algorithms and will be able to apply them to solve typical problems in these areas. | |||||
Inhalt | Randomized Algorithms are algorithms that "flip coins" to take certain decisions. This concept extends the classical model of deterministic algorithms and has become very popular and useful within the last twenty years. In many cases, randomized algorithms are faster, simpler or just more elegant than deterministic ones. In the course, we will discuss basic principles and techniques and derive from them a number of randomized methods for problems in different areas. | |||||
Skript | Yes. | |||||
Literatur | - Randomized Algorithms, Rajeev Motwani and Prabhakar Raghavan, Cambridge University Press (1995) - Probability and Computing, Michael Mitzenmacher and Eli Upfal, Cambridge University Press (2005) | |||||
252-0535-00L | Advanced Machine Learning | W | 8 KP | 3V + 2U + 2A | J. M. Buhmann | |
Kurzbeschreibung | Machine learning algorithms provide analytical methods to search data sets for characteristic patterns. Typical tasks include the classification of data, function fitting and clustering, with applications in image and speech analysis, bioinformatics and exploratory data analysis. This course is accompanied by practical machine learning projects. | |||||
Lernziel | Students will be familiarized with advanced concepts and algorithms for supervised and unsupervised learning; reinforce the statistics knowledge which is indispensible to solve modeling problems under uncertainty. Key concepts are the generalization ability of algorithms and systematic approaches to modeling and regularization. Machine learning projects will provide an opportunity to test the machine learning algorithms on real world data. | |||||
Inhalt | The theory of fundamental machine learning concepts is presented in the lecture, and illustrated with relevant applications. Students can deepen their understanding by solving both pen-and-paper and programming exercises, where they implement and apply famous algorithms to real-world data. Topics covered in the lecture include: Fundamentals: What is data? Bayesian Learning Computational learning theory Supervised learning: Ensembles: Bagging and Boosting Max Margin methods Neural networks Unsupservised learning: Dimensionality reduction techniques Clustering Mixture Models Non-parametric density estimation Learning Dynamical Systems | |||||
Skript | No lecture notes, but slides will be made available on the course webpage. | |||||
Literatur | C. Bishop. Pattern Recognition and Machine Learning. Springer 2007. R. Duda, P. Hart, and D. Stork. Pattern Classification. John Wiley & Sons, second edition, 2001. T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, 2001. L. Wasserman. All of Statistics: A Concise Course in Statistical Inference. Springer, 2004. | |||||
Voraussetzungen / Besonderes | The course requires solid basic knowledge in analysis, statistics and numerical methods for CSE as well as practical programming experience for solving assignments. Students should have followed at least "Introduction to Machine Learning" or an equivalent course offered by another institution. PhD students are required to obtain a passing grade in the course (4.0 or higher based on project and exam) to gain credit points. | |||||
252-0341-01L | Information Retrieval | W | 4 KP | 2V + 1U | G. Fourny | |
Kurzbeschreibung | This course gives an introduction to information retrieval with a focus on text documents and unstructured data. Main topics comprise document modelling, various retrieval techniques, indexing techniques, query frameworks, optimization, evaluation and feedback. | |||||
Lernziel | We keep accumulating data at an unprecedented pace, much faster than we can process it. While Big Data techniques contribute solutions accounting for structured or semi-structured shapes such as tables, trees, graphs and cubes, the study of unstructured data is a field of its own: Information Retrieval. After this course, you will have in-depth understanding of broadly established techniques in order to model, index and query unstructured data (aka, text), including the vector space model, boolean queries, terms, posting lists, dealing with errors and imprecision. You will know how to make queries faster and how to make queries work on very large datasets. You will be capable of evaluating the quality of an information retrieval engine. Finally, you will also have knowledge about alternate models (structured data, probabilistic retrieval, language models) as well as basic search algorithms on the web such as Google's PageRank. | |||||
Inhalt | 1. Introduction 2. Boolean retrieval: the basics of how to index and query unstructured data. 3. Term vocabulary: pre-processing the data prior to indexing: building the term vocabulary, posting lists. 4. Tolerant retrieval: dealing with spelling errors: tolerant retrieval. 5. Index construction: scaling up to large datasets. 6. Index compression: how to improve performance by compressing the index in various ways. 7. Ranked retrieval: how to ranking results with scores and the vector space model 8. Scoring in a bigger picture: taking ranked retrieval to the next level with various improvements, including inexact retrieval 9. Probabilistic information retrieval: how to leverage Bayesian techniques to build an alternate, probabilistic model for information retrieval 10. Language models: another alternate model based on languages, automata and document generation 11. Evaluation: precision, recall and various other measurements of quality 12. Web search: PageRank 13. Wrap-up. The lecture structure will follow the pedagogical approach of the book (see material). The field of information retrieval also encompasses machine learning aspects. However, we will make a conscious effort to limit overlaps, and be complementary with, the Introduction to Machine Learning lecture. | |||||
Literatur | C. D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, Cambridge University Press. | |||||
Voraussetzungen / Besonderes | Prior knowledge in elementary set theory, logics, linear algebra, data structures, abstract data types, algorithms, and probability theory (at the Bachelor's level) is required, as well as programming skills (we will use Python). | |||||
252-1407-00L | Algorithmic Game Theory | W | 7 KP | 3V + 2U + 1A | P. Penna | |
Kurzbeschreibung | Game theory provides a formal model to study the behavior and interaction of self-interested users and programs in large-scale distributed computer systems without central control. The course discusses algorithmic aspects of game theory. | |||||
Lernziel | Learning the basic concepts of game theory and mechanism design, acquiring the computational paradigm of self-interested agents, and using these concepts in the computational and algorithmic setting. | |||||
Inhalt | The Internet is a typical example of a large-scale distributed computer system without central control, with users that are typically only interested in their own good. For instance, they are interested in getting high bandwidth for themselves, but don't care about others, and the same is true for computational load or download rates. Game theory provides a particularly well-suited model for the behavior and interaction of such selfish users and programs. Classic game theory dates back to the 1930s and typically does not consider algorithmic aspects at all. Only a few years back, algorithms and game theory have been considered together, in an attempt to reconcile selfish behavior of independent agents with the common good. This course discusses algorithmic aspects of game-theoretic models, with a focus on recent algorithmic and mathematical developments. Rather than giving an overview of such developments, the course aims to study selected important topics in depth. Outline: - Introduction to classic game-theoretic concepts. - Existence of stable solutions (equilibria), algorithms for computing equilibria, computational complexity. - Speed of convergence of natural game playing dynamics such as best-response dynamics or regret minimization. - Techniques for bounding the quality-loss due to selfish behavior versus optimal outcomes under central control (a.k.a. the 'Price of Anarchy'). - Design and analysis of mechanisms that induce truthful behavior or near-optimal outcomes at equilibrium. - Selected current research topics, such as Google's Sponsored Search Auction, the U.S. FCC Spectrum Auction, Kidney Exchange. | |||||
Skript | Lecture notes will be usually posted on the website shortly after each lecture. | |||||
Literatur | "Algorithmic Game Theory", edited by N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani, Cambridge University Press, 2008; "Game Theory and Strategy", Philip D. Straffin, The Mathematical Association of America, 5th printing, 2004 Several copies of both books are available in the Computer Science library. | |||||
Voraussetzungen / Besonderes | Audience: Although this is a Computer Science course, we encourage the participation from all students who are interested in this topic. Requirements: You should enjoy precise mathematical reasoning. You need to have passed a course on algorithms and complexity. No knowledge of game theory is required. | |||||
263-2800-00L | Design of Parallel and High-Performance Computing | W | 8 KP | 3V + 2U + 2A | M. Püschel, T. Ben Nun | |
Kurzbeschreibung | Advanced topics in parallel / concurrent programming. | |||||
Lernziel | Understand concurrency paradigms and models from a higher perspective and acquire skills for designing, structuring and developing possibly large concurrent software systems. Become able to distinguish parallelism in problem space and in machine space. Become familiar with important technical concepts and with concurrency folklore. |
- Seite 1 von 1