Search result: Catalogue data in Autumn Semester 2019

Computer Science Master Information
Focus Courses
Focus Courses in Information Systems
Focus Elective Courses Information Systems
NumberTitleTypeECTSHoursLecturers
263-3210-00LDeep Learning Information W5 credits2V + 1U + 1AT. Hofmann
AbstractDeep learning is an area within machine learning that deals with algorithms and models that automatically induce multi-level data representations.
Learning objectiveIn recent years, deep learning and deep networks have significantly improved the state-of-the-art in many application domains such as computer vision, speech recognition, and natural language processing. This class will cover the mathematical foundations of deep learning and provide insights into model design, training, and validation. The main objective is a profound understanding of why these methods work and how. There will also be a rich set of hands-on tasks and practical projects to familiarize students with this emerging technology.
Prerequisites / NoticeThis is an advanced level course that requires some basic background in machine learning. More importantly, students are expected to have a very solid mathematical foundation, including linear algebra, multivariate calculus, and probability. The course will make heavy use of mathematics and is not (!) meant to be an extended tutorial of how to train deep networks with tools like Torch or Tensorflow, although that may be a side benefit.

The participation in the course is subject to the following condition:
- Students must have taken the exam in Advanced Machine Learning (252-0535-00) or have acquired equivalent knowledge, see exhaustive list below:

Advanced Machine Learning
https://ml2.inf.ethz.ch/courses/aml/

Computational Intelligence Lab
http://da.inf.ethz.ch/teaching/2019/CIL/

Introduction to Machine Learning
https://las.inf.ethz.ch/teaching/introml-S19

Statistical Learning Theory
http://ml2.inf.ethz.ch/courses/slt/

Computational Statistics
https://stat.ethz.ch/lectures/ss19/comp-stats.php

Probabilistic Artificial Intelligence
https://las.inf.ethz.ch/teaching/pai-f18
263-2400-00LReliable and Interpretable Artificial Intelligence Information W5 credits2V + 1U + 1AM. Vechev
AbstractCreating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models.
Learning objectiveThe main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems.

To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material.
ContentThe course covers some of the latest research (over the last 2-3 years) underlying the creation of safe, trustworthy, and reliable AI (more information here: https://www.sri.inf.ethz.ch/teaching/riai2019):

* Adversarial Attacks on Deep Learning (noise-based, geometry attacks, sound attacks, physical attacks, autonomous driving, out-of-distribution)
* Defenses against attacks
* Combining gradient-based optimization with logic for encoding background knowledge
* Complete Certification of deep neural networks via automated reasoning (e.g., via numerical abstractions, mixed-integer solvers).
* Probabilistic certification of deep neural networks
* Training deep neural networks to be provably robust via automated reasoning
* Understanding and Interpreting Deep Networks
* Probabilistic Programming
Prerequisites / NoticeWhile not a formal requirement, the course assumes familiarity with basics of machine learning (especially probability theory, linear algebra, gradient descent, and neural networks). These topics are usually covered in “Intro to ML” classes at most institutions (e.g., “Introduction to Machine Learning” at ETH).

For solving assignments, some programming experience in Python is excepted.
263-5210-00LProbabilistic Artificial Intelligence Information Restricted registration - show details W5 credits2V + 1U + 1AA. Krause
AbstractThis course introduces core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as sensor networks, robotics, and the Internet.
Learning objectiveHow can we build systems that perform well in uncertain environments and unforeseen situations? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as sensor networks, robotics, and the Internet. The course is designed for upper-level undergraduate and graduate students.
ContentTopics covered:
- Search (BFS, DFS, A*), constraint satisfaction and optimization
- Tutorial in logic (propositional, first-order)
- Probability
- Bayesian Networks (models, exact and approximative inference, learning) - Temporal models (Hidden Markov Models, Dynamic Bayesian Networks)
- Probabilistic palnning (MDPs, POMPDPs)
- Reinforcement learning
- Combining logic and probability
Prerequisites / NoticeSolid basic knowledge in statistics, algorithms and programming
  •  Page  1  of  1