Suchergebnis: Katalogdaten im Herbstsemester 2021
Erdwissenschaften Master | |||||||||||||||||||||||||||||||||
Vertiefung in Geology | |||||||||||||||||||||||||||||||||
Pflichtmodul Analytical Methods in Earth Sciences Es sind je 6KP innerhalb dem Teil A und 6KP innerhalb dem Teil B zu belegen. | |||||||||||||||||||||||||||||||||
Teil A: Mikroskopie Kurse | |||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
651-4045-00L | Microscopy of Metamorphic Rocks | W+ | 2 KP | 2G | A. Galli | ||||||||||||||||||||||||||||
Kurzbeschreibung | Repetition kristalloptischer Methoden mit dem Durchlicht-Polarisationsmikroskop. Untersuchung und Beschreibung des metamorphen Mineralbestands und Gefüges. Bestimmung der zeitlichen Abfolge von Kristallisations- und Deformationsprozessen. Abschätzung von Metamorphosegrad. | ||||||||||||||||||||||||||||||||
Lernziel | - Erweiterte Kenntnisse in optischer Mineralogie. - Beherrschung mikroskopischer Mineral-Bestimmungsmethoden. - Identifizierung u. Charakterisierung von metamorphen Mineralen - Gesteinsbeschreibung und korrekte Namengebung aufgrund von modalem Mineralbestand sowie von Struktur und Textur. - Interpretation der Gesteinsgefüge sowie der Paragenese und der Mineralreaktionen. | ||||||||||||||||||||||||||||||||
Inhalt | - Kurze Repetition der wichtigsten optischen Eigenschaften und der mikroskopischen Methoden zur Identifikation der gesteinsbildenden Minerale. Im Besonderen: Auswertung der Interferenzfiguren im konoskopischen Strahlengang. - Mikroskopieren von Dünnschliffen typischer metam. Gesteine. - Studium und Beschreibung des metamorphen Mineralbestands und des Gefüges. Bestimmung der zeitlichen Abfolge von Kristallisations- und Deformationsprozessen. - Abschätzung von Metamorphosegrad anhand der Paragenesen. - Mengenbestimmung, Angabe der Prozentanteile von Komponenten - Wissenschaftliche Dokumentation dieser Information: Beschreibungen, Zeichnungen, Mikrophotographie mit verschiedenen Beleuchtungsarten und mit linear- oder zirkularpolarisiertem Licht. | ||||||||||||||||||||||||||||||||
Skript | Unterlagen zur Theorie (in Englisch) und den Übungen werden verteilt Die Unterlagen zum ETH Bachelor-Kurs im 6. Semester "Mikroskopie der Gesteine" enthalten den Grundstoff. | ||||||||||||||||||||||||||||||||
Literatur | - Puhan, D.: Anleitung zur Dünnschliffmikroskopie (1994). (Kristalloptik und praktisches Vorgehen. Durchblättern dieses Buches empfohlen) - Nesse, W.D.: Introduction to optical mineralogy. 3. Ed. (2004). Die Figuren zur Theorie werden im Kurs verwendet. Das Buch enthält opt. Mineraldaten. Benutzen oder kaufen Sie dieses Buch von Nesse, wenn Sie petrographische Arbeiten an diversen silikatischen Gesteinen durchführen. - Pichler, H. und Schmitt-Riegraf, C.: Gesteinsbildende Minerale im Dünnschliff (1993). Ein Mineral-Bestimmungsbuch. Empfohlen für petrographische Arbeiten (deutsch). 2. Auflage, ist vergriffen, ist eventuell bei älteren Studenten erhältlich. - Tröger, W.E.: Optische Bestimmung der gesteinsbildenden Minerale. Teil 1. Bestimmungstabellen (1982). Diese Tabellen sind im Kurs vorhanden. - Yardley, B.W.D., Mackenzie, W.S. und Guilford, C.: Atlas metamorpher Gesteine und ihrer Gefüge in Dünnschliffen (1992). Dieses Bilderbuch sollten Sie einmal durchblättern. Die Originalausgabe ist in English. Die Bücher sind auch in der D-ERDW-Bibliothek im Gebäude NO, D-Stock. | ||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Teilnehmerzahl 24. Vorausgesetzt werden Grundkenntnisse in Kristallographie-Mineralogie-Petrographie. Sie müssen einführende Kurse in Polarisationsmikroskopie, Gesteinsmetamorphose und Strukturgeologie absolviert haben! Weitere Mikroskopie-Kurse am D-ERDW der ETH Zürich sind: - Mikroskopieren magmatischer Gesteine, anschliessend an diesen Kurs in der zweiten Semesterhälfte (P. Ulmer, IGP; Inst. für Geochemie und Petrologie) - Mikroskopieren der Sedimentgesteine (Geol. Institut) - Mikroskopieren von Erzmineralen, Auflicht-Mikroskopie (Th. Driesner, IGP) - Mikroskopieren von Mikrostrukturen (Geol. Institut) | ||||||||||||||||||||||||||||||||
651-4047-00L | Microscopy of Magmatic Rocks | W+ | 2 KP | 2G | P. Ulmer | ||||||||||||||||||||||||||||
Kurzbeschreibung | Dieser Kurs vermittelt Basiskenntnisse in Mikroskopie magmatischer Gesteine. Neben der Identifikation magmatischer Mineralien in Dünnschliffen, werden auch Mineralparagenesen, Gefüge und Texturen betrachtet und die mikroskopischen Befunde anhand von Phasendiagrammen in einen grösseren Rahmen (Genese, Differentiation) gestellt. | ||||||||||||||||||||||||||||||||
Lernziel | Das Ziel dieses Praktikums ist Fertigkeiten in folgenden Bereichen zu erlangen respektive zu vertiefen: (1) Optische Bestimmung von Mineralien in magmatischen Gesteinen mit Hilfe des Polarisationsmikroskops; (2) Identifikation magmatischer Gesteine basierend auf Mineralogie, Struktur und Textur; (3) Interpretation von Strukturen und Texturen und Aussage über magmatische Prozesse; (4) Anwendung von Phasendiagrammen auf natürliche Gesteine. | ||||||||||||||||||||||||||||||||
Inhalt | Dieses Praktikum baut auf dem Kurs 'Microscopy of metamorphic rocks' (A. Galli) auf, der unmittelbar vor diesem Kurs durchgeführt wird und wo die Grundlagen der optischen Mineralogie und die Benutzung eines Polarisationsmikroskops erlernt werden. In diesem Praktikum werden die wichtigsten magmatischen Mineralien und Gesteine in Gesteinsdünnschliffen vermittelt. Mineralparagenesen, Gefüge, Texturen und Kristallisationsabfolgen werden bestimmt und dazu verwendet die Genese, Differentiation und Platznahme magmatischer Gesteine zu verstehen. Dazu werden auch die Kenntnisse in Phasendiagrammen aus anderen Vorlesungen (z. Bsp. Magmatismus und Metamorphose I&II) vertieft und auf natürliche Gesteine angewandt um qualitative Aussagen über Stammmagmen und Kristallisationsbedingungen abzuleiten. Das Spektrum der untersuchten Gesteine umfasst Mantelgesteinen, tholeiitische, kalk-alkalische und alkalische Plutonite und Vulkanite, die die wichtigsten magmatischen Mineralien enthalten. | ||||||||||||||||||||||||||||||||
Skript | Basis der optischen Untersuchung (magmatischer) Mineralien mit Hilfe des Polarisationsmikroskops bildet das Tabellenwerk von Tröger (Optische Bestimmung der gesteinsbildenden Minerale, 1982), das in ausreichender Anzahl im Praktikumsraum zur Verfügung steht. Es werden zudem einige zusätzliche Kursunterlagen abgegeben. Als weitere Arbeitsunterlage für das Praktikum empfehle ich das Vorlesungsskript von H.-G- Stosch (Universität Karlsruhe), das auf Wunsch in gedruckter Form abgegeben werden kann. | ||||||||||||||||||||||||||||||||
Literatur | Es gibt verschiedene Lehrbücher, auch in deutscher Sprache, zum Thema Gesteinsmikroskopie, das am besten geeignete Lehrbuch für 'Hard-rockers' ist leider vergriffen und kann allenfalls noch antiquarische erworben werden: Pichler und Schmitt-Riegraf: Gesteinsbildende Minerale im Dünnschliff, Enke Verlag, Stuttgart, 1993). | ||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Dieser Kurs beinhaltet keine optische Mineralogie und/oder Einführung in die Benutzung eines Polarisationsmikroskops und basiert deshalb auf dem vorangehenden Kurs 'Microscopy of metamorphic rocks', A. Galli), wo die Grundlagen der optischen Mineralogie und die Benutzung des Polarisationsmikroskops vermittelt werden. Andernfalls, z. Bsp. für externe Studenten, sind äquivalente Kenntnisse notwendig. Die Abgabe von 3 hinreichend gelösten Hausaufgaben wird mit einer Erhöhung der Gesamtnote um 0.25 angerechnet. Weitere Mikroskopie-Kurse an der ETH am D-ERDW sind: Grundlagen der Gesteinsmikroskopie (M.W. Schmidt, Bachelor-Kurs) Microscopy of metamophic rocks (A. Galli, Voraussetzung für diesen Kurs) Sedimentary petrography and microscopy (V. Picotti & M.G. Fellin) Reflected Light Microscopy and Ore Deposits Practical (T. Driesner) | ||||||||||||||||||||||||||||||||
651-4051-00L | Reflected Light Microscopy and Ore Deposits Practical Maximale Teilnehmerzahl: 19. | W+ | 2 KP | 2P | T. Driesner | ||||||||||||||||||||||||||||
Kurzbeschreibung | Introduction to reflected light microscopy. Use of the microscope. Identification of opaque minerals through the use of determination tables. Description of textures and paragenetic sequences. Taking the course in parallel with Ore Deposits I (651-4037-00L) is recommended. | ||||||||||||||||||||||||||||||||
Lernziel | Recognition of the most important ore minerals in polished section, interpretation of mineral textures in geologcal context | ||||||||||||||||||||||||||||||||
Inhalt | Introduction to reflected light microscopy as a petrographic technique. Leaning main diagnostic criteria. Study of small selection of important and characteristic minerals. Interpreting polished (thin) sections as exercise | ||||||||||||||||||||||||||||||||
Skript | To be handed out in class | ||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Credits and mark based on independent description of selected sample(s) towards the end of the course | ||||||||||||||||||||||||||||||||
651-4113-00L | Sedimentary Petrography and Microscopy | W+ | 2 KP | 2G | V. Picotti, M. G. Fellin | ||||||||||||||||||||||||||||
Kurzbeschreibung | Mikroskopische Untersuchung und Beschreibung von Karbonat (1. Semesterhälfte) und siliziklastischen Gesteinen (2. Hälfte), sowie kieseligen, phosphatischen und evaporitischen Sedimenten. | ||||||||||||||||||||||||||||||||
Lernziel | Beschreibung von Inhalt (Körner, Zement/Matrix), Gefüge, Klassifikation der wichtigen Sedimentgesteine im Dünnschliff. Diskussion und Interpretation des Sedimtationsmilieus. Diagenetische Prozesse. | ||||||||||||||||||||||||||||||||
Inhalt | Mikroskopie von Karbonat- und siliziklastischen Gesteinen, kieseligen Gesteinen und Phosphatgesteinen, ihren Ursprung und die Klassifikation. Diagenetische Prozesse. | ||||||||||||||||||||||||||||||||
Skript | Wird zur Verfügung gestellt. | ||||||||||||||||||||||||||||||||
Literatur | Tucker, M. E. (1985): Einführung in die Sedimentpetrologie. Ferdinand Enke Verlag, Stuttgart. 265 p. | ||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Der vorhergehende Besuch von anderen MSc Mikroskopiekursen (magmatische oder metamorphe Gesteine) ist keine Voraussetzung, wenn im Bachelorprogramm bereits ein Kurs in Mikroskopie der Gesteine absolviert wurde. | ||||||||||||||||||||||||||||||||
Teil B: Methoden | |||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||
651-4055-00L | Analytical Methods in Petrology and Geology | W+ | 3 KP | 2G | J. Allaz, S. Bernasconi, M. Guillong, L. Zehnder | ||||||||||||||||||||||||||||
Kurzbeschreibung | Practical work in analytical chemistry for Earth science students. | ||||||||||||||||||||||||||||||||
Lernziel | Knowledge of some analytical methods used in Earth sciences, introduction to data interpretation, writing of a scientific report. | ||||||||||||||||||||||||||||||||
Inhalt | Introduction to analytical geochemistry and atom physics, notably: - X-ray diffraction (XRD), - X-ray fluorescence analysis (XRF), - Electron Probe Microanalyzer (EPMA), - Laser Ablation Inductively Coupled Plasma Mass Spectroscopy (LA-ICP-MS), - Mass spectroscopy for light isotopes. | ||||||||||||||||||||||||||||||||
Skript | Short handouts for each analytical method. | ||||||||||||||||||||||||||||||||
Kompetenzen |
| ||||||||||||||||||||||||||||||||
651-4117-00L | Sediment Analysis Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W+ | 3 KP | 2G | M. G. Fellin, A. Gilli, V. Picotti | ||||||||||||||||||||||||||||
Kurzbeschreibung | Theoretische Grundlagen und Anwendungen von einfachen Methoden der Sedimentuntersuchung. | ||||||||||||||||||||||||||||||||
Lernziel | Das Ziel ist die korrekte Anwendung der Korngrösse- und Gefüge-Analyse an Sedimenten, um die sedimentären Prozesse und Ablagerungsräume zu bestimmen. | ||||||||||||||||||||||||||||||||
651-4063-00L | X-Ray Powder Diffraction Maximale Teilnehmerzahl: 18 | W+ | 3 KP | 2G | M. Plötze | ||||||||||||||||||||||||||||
Kurzbeschreibung | In the course the students learn to measure X-ray diffraction patterns of minerals and to evaluate these using different software for qualitative and quantitative mineral composition as well as crystallographic parameters. | ||||||||||||||||||||||||||||||||
Lernziel | Upon successful completion of this course students are able to: - describe the principle of X-ray diffraction analysis - carry out a qualitative and quantitative mineralogical analysis independently, - critically assess the data, - communicate the results in a scientific report. | ||||||||||||||||||||||||||||||||
Inhalt | Fundamental principles of X-ray diffraction Setup and operation of X-ray diffractometers Interpretation of powder diffraction data Qualitative and quantitative phase analysis of crystalline powders (e.g. with Rietveld analysis) | ||||||||||||||||||||||||||||||||
Skript | Selected handouts will be made available in the lecture | ||||||||||||||||||||||||||||||||
Literatur | BRINDLEY G.W. and BROWN G. (ed) Crystal structures of clay minerals and their X-ray identification. London : Mineralogical Society monograph no. 5 (1984) (Link) DINNEBIER, R.E. et al.: Powder Diffraction. Royal Society of Chemistry, Cambridge, 2008. (http://pubs.rsc.org/en/Content/eBook/978-0-85404-231-9) PECHARSKY, V.K. and ZAVALIJ, P.Y: Fundamentals of Powder Diffraction and Structural Characterization of Materials. Springer, 2009. (https://link.springer.com/book/10.1007/978-0-387-09579-0?page=2#toc) | ||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The course includes a high portion of practical exercises in sample preparation as well as measurement and evaluation of X-ray powder diffraction data. Own sample will be analysed qualitatively and quantitatively. Knowledge in mineralogy of this system is essential. Software will be provided for future use on own Laptop. | ||||||||||||||||||||||||||||||||
651-4131-00L | Introduction to Digital Mapping Findet dieses Semester nicht statt. Number of participants limited to 20. | W+ Dr | 2 KP | 3V | Noch nicht bekannt | ||||||||||||||||||||||||||||
Kurzbeschreibung | This course gives an introduction to digital mapping in geosciences from data collection to the final map/model construction. The course focuses on the practical application of different digital mapping tools. | ||||||||||||||||||||||||||||||||
Lernziel | The students are able to • describe possible applications using digital mapping devices in geosciences • apply selected digital mapping tools in the office and in the field • visualize field data • evaluate 2D and 3D geodata for the development of a geological model | ||||||||||||||||||||||||||||||||
Inhalt | The following topics are covered • Sensor specifications of tablets and smartphones • Field apps and databases used in digital mapping • Access to spatial geodata in Switzerland, but also worldwide • Visualization of 2D and 3D data • Several case studies on digital mapping • 1 day excursion with practical training underground and with surface geology | ||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisite is • 651-4031-00 Geographic Information Systems or an equivalent course • 651-3482-00 Geological Field Course II: Sedimentary Rocks or an equivalent course | ||||||||||||||||||||||||||||||||
Wahlpflichtmodule Geology Innerhalb der Majors Geology sind mindestens zwei Wahlpflichtmodule zu absolvieren. | |||||||||||||||||||||||||||||||||
Biogeochemistry | |||||||||||||||||||||||||||||||||
Biogeochemistry: Obligatorische Fächer Die obligatorischen Fächer dieses Moduls finden im Frühjahrssemester statt. | |||||||||||||||||||||||||||||||||
Biogeochemistry: Wahlpflichtfächer | |||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||
651-4043-00L | Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W | 3 KP | 2G | V. Picotti, A. Gilli, I. Hernández Almeida, H. Stoll | ||||||||||||||||||||||||||||
Kurzbeschreibung | The course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography. | ||||||||||||||||||||||||||||||||
Lernziel | -You will understand chemistry and biology of the marine carbonate system -You will be able to relate carbonate mineralogy with facies and environmental conditions -You will be familiar with cool-water and warm-water carbonates -You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle -You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth) -You will be able to use geological archives as source of information on global change -You will have an overview of marine sedimentation through time | ||||||||||||||||||||||||||||||||
Inhalt | -carbonates,: chemistry, mineralogy, biology -carbonate sedimentation from the shelf to the deep sea -carbonate facies -cool-water and warm-water carbonates -organic-carbon and black shales -C-cycle, carbonates, Corg : CO2 sources and sink -Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr -marine sediments thorugh geological time -carbonates and evaporites -lacustrine carbonates -economic aspects of limestone | ||||||||||||||||||||||||||||||||
Skript | no script. scientific articles will be distributed during the course | ||||||||||||||||||||||||||||||||
Literatur | We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems" | ||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The grading of students is based on in-class exercises and end-semester examination. | ||||||||||||||||||||||||||||||||
651-4057-00L | Climate History and Palaeoclimatology | W | 3 KP | 2G | H. Stoll, I. Hernández Almeida, H. Zhang | ||||||||||||||||||||||||||||
Kurzbeschreibung | Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport. | ||||||||||||||||||||||||||||||||
Lernziel | The student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia. | ||||||||||||||||||||||||||||||||
Inhalt | 1. Overview of elements of the climate system and earth energy balance 2. The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the latest Palocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene? 3. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future? 4. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations? 5. The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before? | ||||||||||||||||||||||||||||||||
Palaeoclimatology | |||||||||||||||||||||||||||||||||
Palaeoclimatology: Obligatorische Fächer | |||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||
651-4057-00L | Climate History and Palaeoclimatology | W+ | 3 KP | 2G | H. Stoll, I. Hernández Almeida, H. Zhang | ||||||||||||||||||||||||||||
Kurzbeschreibung | Climate history and paleoclimatology explores how the major features of the earth's climate system have varied in the past, and the driving forces and feedbacks for these changes. The major topics include the earth's CO2 concentration and mean temperature, the size and stability of ice sheets and sea level, the amount and distribution of precipitation, and the ocean heat transport. | ||||||||||||||||||||||||||||||||
Lernziel | The student will be able to describe the natural factors lead to variations in the earth's mean temperature, the growth and retreat of ice sheets, and variations in ocean and atmospheric circulation patterns, including feedback processes. Students will be able to interpret evidence of past climate changes from the main climate indicators or proxies recovered in geological records. Students will be able to use data from climate proxies to test if a given hypothesized mechanism for the climate change is supported or refuted. Students will be able to compare the magnitudes and rates of past changes in the carbon cycle, ice sheets, hydrological cycle, and ocean circulation, with predictions for climate changes over the next century to millennia. | ||||||||||||||||||||||||||||||||
Inhalt | 1. Overview of elements of the climate system and earth energy balance 2. The Carbon cycle - long and short term regulation and feedbacks of atmospheric CO2. What regulates atmospheric CO2 over long tectonic timescales of millions to tens of millions of years? What are the drivers and feedbacks of transient perturbations like at the latest Palocene? What drives CO2 variations over glacial cycles and what drives it in the Anthropocene? 3. Ice sheets and sea level - What do expansionist glaciers want? What is the natural range of variation in the earth's ice sheets and the consequent effect on sea level? How do cyclic variations in the earth's orbit affect the size of ice sheets under modern climate and under past warmer climates? What conditions the mean size and stability or fragility of the large polar ice caps and is their evidence that they have dynamic behavior? What rates and magnitudes of sea level change have accompanied past ice sheet variations? When is the most recent time of sea level higher than modern, and by how much? What lessons do these have for the future? 4. Atmospheric circulation and variations in the earth's hydrological cycle - How variable are the earth's precipitation regimes? How large are the orbital scale variations in global monsoon systems? Will mean climate change El Nino frequency and intensity? What factors drive change in mid and high-latitude precipitation systems? Is there evidence that changes in water availability have played a role in the rise, demise, or dispersion of past civilizations? 5. The Ocean heat transport - How stable or fragile is the ocean heat conveyor, past and present? When did modern deepwater circulation develop? Will Greenland melting and shifts in precipitation bands, cause the North Atlantic Overturning Circulation to collapse? When and why has this happened before? | ||||||||||||||||||||||||||||||||
Palaeoclimatology: Wahlfpflichtfächer | |||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||
651-4043-00L | Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W | 3 KP | 2G | V. Picotti, A. Gilli, I. Hernández Almeida, H. Stoll | ||||||||||||||||||||||||||||
Kurzbeschreibung | The course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography. | ||||||||||||||||||||||||||||||||
Lernziel | -You will understand chemistry and biology of the marine carbonate system -You will be able to relate carbonate mineralogy with facies and environmental conditions -You will be familiar with cool-water and warm-water carbonates -You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle -You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth) -You will be able to use geological archives as source of information on global change -You will have an overview of marine sedimentation through time | ||||||||||||||||||||||||||||||||
Inhalt | -carbonates,: chemistry, mineralogy, biology -carbonate sedimentation from the shelf to the deep sea -carbonate facies -cool-water and warm-water carbonates -organic-carbon and black shales -C-cycle, carbonates, Corg : CO2 sources and sink -Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr -marine sediments thorugh geological time -carbonates and evaporites -lacustrine carbonates -economic aspects of limestone | ||||||||||||||||||||||||||||||||
Skript | no script. scientific articles will be distributed during the course | ||||||||||||||||||||||||||||||||
Literatur | We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems" | ||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The grading of students is based on in-class exercises and end-semester examination. | ||||||||||||||||||||||||||||||||
Sedimentology | |||||||||||||||||||||||||||||||||
Sedimentology: Obligatorische Fächer | |||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||
651-4041-00L | Sedimentology I: Physical Processes and Sedimentary Systems | W+ | 3 KP | 2G | V. Picotti | ||||||||||||||||||||||||||||
Kurzbeschreibung | Sediments preserved a record of past landscapes. This courses focuses on understanding the processes that modify sedimentary landscapes with time and how we can read this changes in the sedimentary record. | ||||||||||||||||||||||||||||||||
Lernziel | The students learn basic concepts of modern sedimentology and stratigraphy in the context of sequence stratigraphy and sea level change. They discuss the advantages and pitfalls of the method and look beyond. In particular we pay attention to introducing the importance of considering entire sediment routing systems and understanding their functionning. | ||||||||||||||||||||||||||||||||
Inhalt | Details on the program will be handed out during the first lecture. We will attribute the papers for presentation on the 26th, so please be here on that day! | ||||||||||||||||||||||||||||||||
Literatur | The sedimentary record of sea-level change Angela Coe, the Open University. Cambridge University Press | ||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The grading of students is based on in-class exercises and end-semester examination. | ||||||||||||||||||||||||||||||||
651-4043-00L | Sedimentology II: Biological and Chemical Processes in Lacustrine and Marine Systems Prerequisite: Successful completion of the MSc-course "Sedimentology I" (651-4041-00L). | W+ | 3 KP | 2G | V. Picotti, A. Gilli, I. Hernández Almeida, H. Stoll | ||||||||||||||||||||||||||||
Kurzbeschreibung | The course will focus on biological amd chemical aspects of sedimentation in marine environments. Marine sedimentation will be traced from coast to deep-sea. The use of stable isotopes palaeoceanography will be discussed. Neritic, hemipelagic and pelagic sediments will be used as proxies for environmental change during times of major perturbations of climate and oceanography. | ||||||||||||||||||||||||||||||||
Lernziel | -You will understand chemistry and biology of the marine carbonate system -You will be able to relate carbonate mineralogy with facies and environmental conditions -You will be familiar with cool-water and warm-water carbonates -You will see carbonate and organic-carbon rich sediments as part of the global carbon cycle -You will be able to recognize links between climate and marine carbonate systems (e.g. acidification of oceans and reef growth) -You will be able to use geological archives as source of information on global change -You will have an overview of marine sedimentation through time | ||||||||||||||||||||||||||||||||
Inhalt | -carbonates,: chemistry, mineralogy, biology -carbonate sedimentation from the shelf to the deep sea -carbonate facies -cool-water and warm-water carbonates -organic-carbon and black shales -C-cycle, carbonates, Corg : CO2 sources and sink -Carbonates: their geochemical proxies for environmental change: stable isotopes, Mg/Ca, Sr -marine sediments thorugh geological time -carbonates and evaporites -lacustrine carbonates -economic aspects of limestone | ||||||||||||||||||||||||||||||||
Skript | no script. scientific articles will be distributed during the course | ||||||||||||||||||||||||||||||||
Literatur | We will read and critically discuss scientific articles relevant for "biological and chemical processes in marine and lacustrine systems" | ||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The grading of students is based on in-class exercises and end-semester examination. | ||||||||||||||||||||||||||||||||
Sedimentology: Wahlpflichtfächer | |||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||
651-4901-00L | Quaternary Dating Methods | W | 3 KP | 2G | I. Hajdas, M. Christl, S. Ivy Ochs | ||||||||||||||||||||||||||||
Kurzbeschreibung | Reconstruction of time scales is critical for all Quaternary studies in both Geology and Archeology. Various methods are applied depending on the time range of interest and the archive studied. In this lecture, we focus on the last 50 ka and the methods that are most frequently used for dating Quaternary sediments and landforms in this time range. | ||||||||||||||||||||||||||||||||
Lernziel | Students will be made familiar with the details of the six dating methods through lectures on basic principles, analysis of case studies, solving of problem sets for age calculation and visits to dating laboratories. At the end of the course students will: 1. understand the fundamental principles of the most frequently used dating methods for Quaternary studies. 2. be able to calculate an age based on data of the six methods studied. 3. choose which dating method (or combination of methods) is suitable for a certain field problem. 4. critically read and evaluate the application of dating methods in scientific publications. | ||||||||||||||||||||||||||||||||
Inhalt | 1. Introduction: Time scales for the Quaternary, Isotopes and decay 2. Radiocarbon dating: principles and applications 3. Cosmogenic nuclides: 3He,10Be, 14C, 21Ne, 26Cl, 36Cl 4. U-series disequilibrium dating 5. Luminescence dating 6. Introduction to incremental: varve counting, dendrochronology and ice cores chronologies 7. Cs-137 and Pb-210 (soil, sediments, ice core) 8. Summary and comparison of results from several dating methods at specific sites | ||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Visit to radiocarbon lab, cosmogenic nuclide lab, accelerator (AMS) facility. Visit to Limno Lab and sampling a sediment core Optional (individual): 1-5 days hands-on radiocarbon dating at the C14 lab at ETH Hoenggerebrg Required: attending the lecture, visiting laboratories, handing back solutions for problem sets (Exercises) | ||||||||||||||||||||||||||||||||
651-4063-00L | X-Ray Powder Diffraction Maximale Teilnehmerzahl: 18 | W | 3 KP | 2G | M. Plötze | ||||||||||||||||||||||||||||
Kurzbeschreibung | In the course the students learn to measure X-ray diffraction patterns of minerals and to evaluate these using different software for qualitative and quantitative mineral composition as well as crystallographic parameters. | ||||||||||||||||||||||||||||||||
Lernziel | Upon successful completion of this course students are able to: - describe the principle of X-ray diffraction analysis - carry out a qualitative and quantitative mineralogical analysis independently, - critically assess the data, - communicate the results in a scientific report. | ||||||||||||||||||||||||||||||||
Inhalt | Fundamental principles of X-ray diffraction Setup and operation of X-ray diffractometers Interpretation of powder diffraction data Qualitative and quantitative phase analysis of crystalline powders (e.g. with Rietveld analysis) | ||||||||||||||||||||||||||||||||
Skript | Selected handouts will be made available in the lecture | ||||||||||||||||||||||||||||||||
Literatur | BRINDLEY G.W. and BROWN G. (ed) Crystal structures of clay minerals and their X-ray identification. London : Mineralogical Society monograph no. 5 (1984) (Link) DINNEBIER, R.E. et al.: Powder Diffraction. Royal Society of Chemistry, Cambridge, 2008. (http://pubs.rsc.org/en/Content/eBook/978-0-85404-231-9) PECHARSKY, V.K. and ZAVALIJ, P.Y: Fundamentals of Powder Diffraction and Structural Characterization of Materials. Springer, 2009. (https://link.springer.com/book/10.1007/978-0-387-09579-0?page=2#toc) | ||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The course includes a high portion of practical exercises in sample preparation as well as measurement and evaluation of X-ray powder diffraction data. Own sample will be analysed qualitatively and quantitatively. Knowledge in mineralogy of this system is essential. Software will be provided for future use on own Laptop. | ||||||||||||||||||||||||||||||||
Structural Geology | |||||||||||||||||||||||||||||||||
Structural Geology: Obligatorische Fächer | |||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||
651-4132-00L | Field Course IV: Non Alpine Field Course Findet dieses Semester nicht statt. Priority is given to D-ERDW students. If space is available UZH Geography and Earth System Sciences students may attend this field course at full cost. No registration through myStudies. The registration for excursions and field courses goes through http://exkursionen.erdw.ethz.ch only. | W+ | 3 KP | 6P | W. Behr | ||||||||||||||||||||||||||||
Kurzbeschreibung | |||||||||||||||||||||||||||||||||
Lernziel | |||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Students who want to participate hand in a short motivation letter (max. 1 page A4). The final selection will be based on this motivation letter. Deadline for motivation letter: 31 October 2018 Final decision 20 November 2018 Students registering for the course confirm having read and accepted the terms and conditions for excursions and field courses of D-ERDW Link | ||||||||||||||||||||||||||||||||
Structural Geology: Wahlpflichtfächer | |||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||
651-4111-00L | Experimental Rock Physics and Deformation | W | 3 KP | 2G | A. S. Zappone, C. Madonna, L. Tokle | ||||||||||||||||||||||||||||
Kurzbeschreibung | We illustrate some physical properties, deformation mechanisms, and define flow laws. We show the fundamental techniques for the measurement in laboratory of density, permeability, elastic properties and deformation. We presented actual case studies and discuss upscaling from laboratory to field. | ||||||||||||||||||||||||||||||||
Lernziel | The objective of this course is to introduce rock physics and rock deformation, and discuss the aid of laboratory tests to interpretation at large scale . Rock Physics provides the understanding to connect geomechanical and geophysical data to the intrinsic properties of rocks, such as mineral composition and texture. Rock Physics is a key component in geo-resources exploration and exploitation, and in geo-hazard assessment. For rock deformation we will illustrate how to determined flow-laws of rocks from experiments and how to extrapolate to natural conditions. Since the time scale of laboratory experiments is several orders of magnitude faster than nature, we will compare the microstructure of natural rocks with that produced during the experiments to prove that the same mechanisms are operating. For this purpose, the fundamental techniques of experimental rock deformation will be illustrated and test on natural rock samples in the plastic deformation regime (high temperature) as well in the brittle regime ( room temperature) will be presented. We will perform tests in the lab, to acquire the data, to correct for calibration and to process the data and finally to interpret the data. The course is at Master student level, but will be useful for PhDs students who want to begin to work in experimental deformation or who want to know the meaning and the limitation of laboratory flow-laws for geodynamic modelling | ||||||||||||||||||||||||||||||||
Inhalt | The course will focus on research-based term project, lectures will alternate with laboratory demonstrations. We will illustrate how intrinsic properties of rocks (mineral composition, porosity, pore fluids, crystallographic orientation, microstructures) are connected to the following physical properties: - permeability; - elastic properties for seismic interpretations; - anisotropy of the above physical properties. We will measure some of those parameters in laboratory and discuss real case studies and applications. Principles of deformation mechanisms, flow laws, and deformation mechanism maps will be presented in lectures. In laboratory we will show: - Experimental deformation rigs (gas, fluid and solid confining media); - Main part of the apparatus (mechanical, hydraulic, heating system, data logging); - Calibration of an apparatus (distortion of the rig; transducers calibration); - Various types of tests (axial deformation; diagonal cut and torsion; deformation; constant strain rate tests; creep tests; stepping tests); | ||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The course of Structural Geology (651-3422-00L) is highly recommended before attending this course. Moreover the students should have basic knowledge in geophysics and mineralogy/crystallography. In doubt, please contact the course responsible beforehand. | ||||||||||||||||||||||||||||||||
651-3521-00L | Tectonics | W | 3 KP | 2V | W. Behr, S. Willett | ||||||||||||||||||||||||||||
Kurzbeschreibung | Umfassendes Verständnis der Entwicklung, Mechanik und Rheologie von tektonischen Systeme (divergente, konvergente und Blattverschiebungs-Systeme) im Massstab Lithosphäre, Kruste und im Aufschluss. Studium der plattentektonischen und anderen Orogenese-Prozesse anhand von Vergleichsbeispielen aus dem Alpen-Himalaya Orogen-System. | ||||||||||||||||||||||||||||||||
Lernziel | Umfassendes Verständnis der Entwicklung, Mechanik und Rheologie von tektonischen Systeme (divergente, konvergente und Blattverschiebungs-Systeme) im Massstab Lithosphäre, Kruste und im Aufschluss. Abschätzung der Mechanismen und Kräfte, welche für Plattenbewegungen im allgemeinen und für spezielle großräumige Strukturen (ozeanische Becken und Zyklus der ozeanischen Lithoshpäre, Gebirgssysteme und kontinentales Wachstum, usw.) verantwortlich sind, basierend auf theoretischen und experimentellen Informationen. Studium der plattentektonischen und anderen Orogenese-Prozesse anhand von Vergleichsbeispielen aus dem Alpen-Himalaya Orogen-System. | ||||||||||||||||||||||||||||||||
Inhalt | Plattentektoniksysteme: System Mantel-Lithosphärenplatten, drei Arten von Plattengrenzen, ihre Rollen und Charakteristika, Zyklus der ozeanischen Lithosphäre, Kratone, Wachstum der Kontinente und Bildung der Superkontinente. Rheologie der geschichteten Lithosphäre und des oberen Mantels. Obduktionssysteme Kollisionssysteme Extensionssysteme Entwicklung der Becken Passive and aktive Kontinentalränder | ||||||||||||||||||||||||||||||||
Literatur | Condie, K. C. 1997. Plate tectonics and crustal evolution. Butterworth-Heinemann, Oxford. Cox, A. & Hart, R. B. 1986. Plate tectonics. How it works. Blackwell Scientific Publications, Oxford. Dewey, J. F. 1977. Suture zone complexities: A review. Tectonophysics 40, 53-67. Dewey, J. F., Pitman III, W. C., Ryan, W. B. F. & Bonin, J. 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137-3180. Kearey, P. & Vine, F. J. 1990. Global tectonics. Blackwell Scientific Publications, Oxford. Park, R. G. 1993. Geological structures and moving plates. Chapman & Hall, Glasgow. Turcotte, D. L. & Schubert, G. 2002. Geodynamics. Cambridge University Press, Cambridge. Windley, B. F. 1995. The evolving continents. John Wiley & Sons Ltd, Chichester. | ||||||||||||||||||||||||||||||||
Wahlmodule Geology | |||||||||||||||||||||||||||||||||
Basin Analysis | |||||||||||||||||||||||||||||||||
Basin Analysis: Obligatorische Fächer | |||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||
651-4341-00L | Source to Sink Sedimentary Systems | O | 3 KP | 2G | T. I. Eglinton, J. Hemingway, S. Willett | ||||||||||||||||||||||||||||
Kurzbeschreibung | The transfer and redistribution of mass and chemical elements at the Earth’s surface is controlled by a wide range of processes that will affect the magnitude and nature of fluxes exported from continental fluvial systems. This course addresses the production, transport, and deposition of sediments from source to sink and their interaction with biogeochemical cycles. | ||||||||||||||||||||||||||||||||
Lernziel | This course aims at integrating different earth science disciplines (geomorphology, geochemistry, and tectonics) to gain a better understanding of the physical and biogeochemical processes at work across the sediment production, routing, and depositional systems. It will provide insight into how it is actually possible to “see a world in a grain of sand” by taking into account the cascade of physical and chemical processes that shaped and modified sediments and chemical elements from their source to their sink. | ||||||||||||||||||||||||||||||||
Inhalt | Lectures will introduce the main source to sink concepts and cover physical and biogeochemical processes in upland, sediment producing areas (glacial and periglacial processes; mass movements; hillslopes and soil processes/development; critical zone biogeochemical processes). Field excursion (3 days, 8-10 October): will cover the upper Rhône from the Rhône glacier to the Rhône delta in Lake Geneva) as small scale source-to-sink system. Practicals comprise (I) a small autonomous project on the Rhône catchment based on samples collected during the field trip and (II) an independent report on how you would design, build, and implement your own source-to-sink study. | ||||||||||||||||||||||||||||||||
Skript | Lecture notes are provided online during the course. They summarize the current subjects week by week and provide the essential theoretical background. | ||||||||||||||||||||||||||||||||
Literatur | Suggested references : - "Sediment routing systems: the fate of sediments from Source to Sink" by Philip A. Allen (Cambridge University Press) - "Principles of soilscape and landscape evolution by Garry Willgoose" (Cambridge University Press) - "Geomorphology, the mechanics and chemistry of landscapes" by Robert S. Anderson & Suzanne P. Anderson (Cambridge University Press) |
- Seite 1 von 7 Alle