Suchergebnis: Katalogdaten im Herbstsemester 2021
MAS in Sustainable Water Resources ![]() Das Masterprogramm (Master of Advanced Studies) in erneuerbaren Wasserressourcen ist ein vollzeitlicher Weiterbildungsdiplomlehrgang über 12 Monate. Der Fokus des Programms liegt auf der Nachhaltigkeit und Wasserressourcen in Lateinamerika, mit einem speziellen Augenmerk auf die Einflüsse von Entwicklung und Klimaveränderung auf die Wasserressourcen. Der Kurs verbindet multidisziplinäre Kursarbeit mit hochrangiger Forschung. Eine Auswahl der Forschungsthemen sind: Wasserqualität, Wasserquantität, Wasser für die Landwirtschaft, Wasser für die Umwelt, Anpassungen an die Klimaveränderung und integrierte Wasserwirtschaft. Sprache: Englisch. Kreditpunkte: 66 ECTS. Für weitere Informationen: http://www.mas-swr.ethz.ch/ | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() Electives: 6 credits has to be achieved. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401-6215-00L | Using R for Data Analysis and Graphics (Part I) ![]() | W | 1.5 KP | 1G | M. Mächler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course provides the first part an introduction to the statistical software R (https://www.r-project.org/) for scientists. Topics covered are data generation and selection, graphical and basic statistical functions, creating simple functions, basic types of objects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students will be able to use the software R for simple data analysis and graphics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course provides the first part of an introduction to the statistical software R for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R. Part I of the course covers the following topics: - What is R? - R Basics: reading and writing data from/to files, creating vectors & matrices, selecting elements of dataframes, vectors and matrices, arithmetics; - Types of data: numeric, character, logical and categorical data, missing values; - Simple (statistical) functions: summary, mean, var, etc., simple statistical tests; - Writing simple functions; - Introduction to graphics: scatter-, boxplots and other high-level plotting functions, embellishing plots by title, axis labels, etc., adding elements (lines, points) to existing plots. The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: www.rstudio.org Note: Part I of UsingR is complemented and extended by Part II, which is offered during the second part of the semester and which can be taken independently from Part I. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | An Introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The course resources will be provided via the Moodle web learning platform. As from FS 2019, subscribing via Mystudies should *automatically* make you a student participant of the Moodle course of this lecture, which is at https://moodle-app2.let.ethz.ch/course/view.php?id=15518 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4077-00L | Quantification and Modeling of the Cryosphere: Dynamic Processes (University of Zurich) Der Kurs muss direkt an der UZH als incoming student belegt werden. UZH Modulkürzel: GEO815 Beachten Sie die Einschreibungstermine an der UZH: https://www.uzh.ch/cmsssl/de/studies/application/deadlines.html | W | 3 KP | 1V | Uni-Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Übersicht über die wichtigsten formbildenden Prozesse und Landschaftsformen in kalten Regionen der Erde (Gletschergebiete und Gebiete intensiven Bodenfrostes) mit Schwerpunkt Hochgebirge. Diskussion aktueller Forschungsfragen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Kenntnis der wichtigsten klimarelevanten geomorphologischen Prozesse und Phänomene im Hochgebirge, Verständnis für aktuelle Forschungsfragen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Erosion und Sedimentation durch Gletscher in Abhängigkeit von Klima, Topographie, Eistemperatur, Sedimentbilanz, Gleitbewegung und Schmelzwasserabfluss. Prozesse und Formen im Bereich des jahreszeitlichen und ganzjährigen Bodenfrostes (Frostverwitterung, Felsstürze, Schutthalden, Solifluktion, Permafrostkriechen/Blockgletscher, Murgänge). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Glacial and periglacial geomorphodynamics in high-mountain regions. Ca. 100 Seiten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | references in skript | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Grundkenntisse über Geomorphologie und Gletscher und Permafrost aus dem Kursangebot von ETH/UZH oder entsprechenden Vorlesungsskripten | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1341-00L | Water Resources and Drinking Water | W | 3 KP | 2G | S. Hug, M. Berg, F. Hammes, U. von Gunten | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. Natural processes, anthropogenic pollution, legislation of groundwater and surface water and of drinking water as well as water treatment will be discussed for industrialized and developing countries. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The goal of this lecture is to give an overview over the whole path of drinking water from the source to the tap and understand the involved physical, chemical and biological processes which determine the drinking water quality. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course covers qualitative (chemistry and microbiology) and quantitative aspects of drinking water from the resource to the tap. The various water resources, particularly groundwater and surface water, are discussed as part of the natural water cycle influenced by anthropogenic activities such as agriculture, industry, urban water systems. Furthermore legislation related to water resources and drinking water will be discussed. The lecture is focused on industrialized countries, but also addresses global water issues and problems in the developing world. Finally unit processes for drinking water treatment (filtration, adsorption, oxidation, disinfection etc.) will be presented and discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts will be distributed | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Will be mentioned in handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4101-00L | Physics of Glaciers ![]() | W | 3 KP | 3G | M. Lüthi, F. T. Walter, M. Werder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Understanding glaciers and ice sheets with simple physical concepts. Topics include the reaction of glaciers to the climate, flow of glacier ice, temperature in glaciers and ice sheets, glacier hydrology, glacier seismology, basal motion and calving glaciers. A special focus is the current development of the ice sheets of Greenland and Antarctica. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After the course the students are able understand and interpret measurements of ice flow, subglacial water pressure and ice temperature. They will have an understanding of glaciology-related physical concepts sufficient to understand most of the contemporary literature on the topic. The students will be well equipped to work on glacier-related problems by numerical modeling, remote sensing, and field work. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The dynamics of glaciers and polar ice sheets is the key requisite to understand their history and their future evolution. We will take a closer look at ice deformation, basal motion, heat flow and glacier hydraulics. The specific dynamics of tide water and calving glaciers is investigated, as is the reaction of glaciers to changes in mass balance (and therefore climate). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | http://people.ee.ethz.ch/~luethim/teaching.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | A list of relevant literature is available on the class web site. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | High school mathematics and physics knowledge required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1631-00L | Foundations of Ecosystem Management ![]() | W | 5 KP | 3G | J. Ghazoul, C. Garcia, J. Garcia Ulloa, A. Giger Dray | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course introduces the broad variety of conflicts that arise in projects focusing on sustainable management of natural resources. It explores case studies of ecosystem management approaches and considers their practicability, their achievements and possible barriers to their uptake. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students should be able to a) propose appropriate and realistic solutions to ecosystem management problems that integrate ecological, economic and social dimensions across relevant temporal and spatial scales. b) identify important stakeholders, their needs and interests, and the main conflicts that exist among them in the context of land and resource management. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Traditional management systems focus on extraction of natural resources, and their manipulation and governance. However, traditional management has frequently resulted in catastrophic failures such as, for example, the collapse of fish stocks and biodiversity loss. These failures have stimulated the development of alternative ‘ecosystem management’ approaches that emphasise the functionality of human-dominated systems. Inherent to such approaches are system-wide perspectives and a focus on ecological processes and services, multiple spatial and temporal scales, as well as the need to incorporate diverse stakeholder interests in decision making. Thus, ecosystem management is the science and practice of managing natural resources, biodiversity and ecological processes, to meet multiple demands of society. It can be local, regional or global in scope, and addresses critical issues in developed and developing countries relating to economic and environmental security and sustainability. This course provides an introduction to ecosystem management, and in particular the importance of integrating ecology into management systems to meet multiple societal demands. The course explores the extent to which human-managed terrestrial systems depend on underlying ecological processes, and the consequences of degradation of these processes for human welfare and environmental well-being. Building upon a theoretical foundation, the course will tackle issues in resource ecology and management, notably forests, agriculture and wild resources within the broader context of sustainability, biodiversity conservation and poverty alleviation or economic development. Case studies from tropical and temperate regions will be used to explore these issues. Dealing with ecological and economic uncertainty, and how this affects decision making, will be discussed. Strategies for conservation and management of terrestrial ecosystems will give consideration to landscape ecology, protected area systems, and community management, paying particular attention to alternative livelihood options and marketing strategies of common pool resources. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | No Script | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Chichilnisky, G. and Heal, G. (1998) Economic returns from the biosphere. Nature, 391: 629-630. Daily, G.C. (1997) Nature’s Services: Societal dependence on natural ecosystems. Island Press. Washington DC. Hindmarch, C. and Pienkowski, M. (2000) Land Management: The Hidden Costs. Blackwell Science. Millenium Ecosystem Assessment (2005) Ecosystems and Human Well-being: Synthesis. Island Press, Washington DC. Milner-Gulland, E.J. and Mace, R. (1998) Conservation of Biological Resources. Blackwell Science. Gunderson, L.H. and Holling, C.S. (2002) Panarchy: understanding transformations in human and natural systems. Island Press. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-0535-00L | Environmental Soil Physics/Vadose Zone Hydrology | W | 3 KP | 2V + 1U | A. Carminati, P. U. Lehmann Grunder | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course provides theoretical and practical foundations for understanding and characterizing physical and transport properties of soils/ near-surface earth materials, and quantifying hydrological processes and fluxes of mass and energy at multiple scales. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students are able to - characterize porous media at different scales - parameterize structural, flow and transport properties of partially-saturated porous media - quantify driving forces and resulting fluxes of water, solute, and heat in soils | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Week 1: Introduction, soil and vadose zone, units and dimensions, definitions and basic mass-volume relationships between the solid, liquid and gaseous phases; soil water content; soil texture; particle size distributions; Week 2: Pore scale consideration, pore sizes, shapes and connectivity, coordination number, continuity and percolation, surface area, soil structure Week 3: Capillarity – capillary rise, surface tension, Young-Laplace equation; Washburn equation; numerical lab Week 4: Soil Water Potential - the energy state of soil water; total water potential and its components; properties of water (molecular, surface tension, and capillary rise); units and calculations and measurement of equilibrium soil water potential components Week 5: Soil water characteristics - definitions and measurements; parametric models, fitting and interpretation, hysteresis; demo lab Week 6: Saturated water flow in soils - laminar flow in tubes (Poiseuille's Law); Darcy's Law, conditions and states of flow; permeability and hydraulic conductivity, measurement and theoretical concepts (Kozeny-Carman) Week 7: Unsaturated water flow in soils - unsaturated hydraulic conductivity models and applications; Richards equation, approximations of Richards equation for steady state; approximate solutions to infiltration (Green-Ampt, Philip); outlook on unstable and preferential flow Week 8: Numerical solution of Richards equation – using Hydrus1D for simulation of unsaturated flow; choosing class project Week 9: Energy balance and land atmosphere interactions - radiation and energy balance; evapotranspiration, definitions and estimation; evaporation stages and characteristic length; soil thermal properties; steady state heat flow; non-steady heat flow Week 10: Root water uptake and transpiration Week 11: Solute and gas transport in soils; transport mechanisms of solutes in porous media; breakthrough curves; convection-dispersion equation; solutions for pulse and step solute application; parameter estimation; salt balance. Week 12: Summary of lectures; solution of old exam Week 13: Written semester-end exam Week 14: Short presentations of Hydrus class projects; discussion of written exam | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Supplemental textbook (not mandatory) -Introduction to Environmental Soil Physics, by: D. Hillel | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-0649-00L | Applied Statistical Regression | W | 5 KP | 2V + 1U | M. Dettling | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course offers a practically oriented introduction into regression modeling methods. The basic concepts and some mathematical background are included, with the emphasis lying in learning "good practice" that can be applied in every student's own projects and daily work life. A special focus will be laid in the use of the statistical software package R for regression analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students acquire advanced practical skills in linear regression analysis and are also familiar with its extensions to generalized linear modeling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course starts with the basics of linear modeling, and then proceeds to parameter estimation, tests, confidence intervals, residual analysis, model choice, and prediction. More rarely touched but practically relevant topics that will be covered include variable transformations, multicollinearity problems and model interpretation, as well as general modeling strategies. The last third of the course is dedicated to an introduction to generalized linear models: this includes the generalized additive model, logistic regression for binary response variables, binomial regression for grouped data and poisson regression for count data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | A script will be available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Faraway (2005): Linear Models with R Faraway (2006): Extending the Linear Model with R Draper & Smith (1998): Applied Regression Analysis Fox (2008): Applied Regression Analysis and GLMs Montgomery et al. (2006): Introduction to Linear Regression Analysis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The exercises, but also the classes will be based on procedures from the freely available, open-source statistical software package R, for which an introduction will be held. In the Mathematics Bachelor and Master programmes, the two course units 401-0649-00L "Applied Statistical Regression" and 401-3622-00L "Statistical Modelling" are mutually exclusive. Registration for the examination of one of these two course units is only allowed if you have not registered for the examination of the other course unit. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1551-00L | Sustainability Assessment ![]() Number of participants limited to 35. Waiting list will be deleted October 1st, 2021. No enrollment possible after October 1st, 2021. | W | 3 KP | 2G | P. Krütli, D. Nef | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course teaches concepts and methodologies of sustainability assessment. A special focus is given to the social dimension and to social justice as a guiding principle of sustainability. The format of the course is seminar-like, interactive. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | At the end of the course, students: - know core concepts of sustainable development, main features of social justice in the context of sustainability, a selection of methodologies for the assessment of sustainable development - have a deepened understanding of the challenges of trade-offs between the different dimensions of sustainable development and their respective impacts on individual and societal decision-making | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course is structured as follows: - overview of rationale, objectives, concepts and origins of sustainable development (approx. 15%) - overview of the concept of social justice as guiding principle of the social dimension of sustainability (approx. 20%) - analysis of a selection of concepts and methodologies to assess sustainable development in a variety of contexts (approx. 65%) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts are provided | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Selected scientific articles and book-chapters | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Students of this course may also be interested in the course transdisciplinary case study (tdCS) in the Spring semester (701-1502-00L) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1644-00L | Mountain Forest Hydrology | W | 5 KP | 3G | J. W. Kirchner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course presents a process-based view of the hydrology, biogeochemistry, and geomorphology of mountain streams. Students learn how to integrate process knowledge, data, and models to understand how landscapes regulate the fluxes of water, sediment, nutrients, and pollutants in streams, and to anticipate how streams will respond to changes in land use, atmospheric deposition, and climate. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students will have a broad understanding of the hydrological, biogeochemical, and geomorphological functioning of mountain catchments. They will practice using data and models to frame and test hypotheses about connections between streams and landscapes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Streams are integrated monitors of the health and functioning of their surrounding landscapes. Streams integrate the fluxes of water, solutes, and sediment from their contributing catchment area; thus they reflect the spatially integrated hydrological, ecophysiological, biogeochemical, and geomorphological processes in the surrounding landscape. At a practical level, there is a significant public interest in managing forested upland landscapes to provide a reliable supply of high-quality surface water and to minimize the risk of catastrophic flooding and debris flows, but the scientific background for such management advice is still evolving. Using a combination of lectures, field exercises, and data analysis, we explore the processes controlling the delivery of water, solutes, and sediment to streams, and how those processes are affected by changes in land cover, land use, and climate. We review the connections between process understanding and predictive modeling in these complex environmental systems. How well can we understand the processes controlling watershed-scale phenomena, and what uncertainties are unavoidable? What are the relative advantages of top-down versus bottom-up approaches? How much can "black box" analyses reveal about what is happening inside the black box? Conversely, can small-scale, micro-mechanistic approaches be successfully "scaled up" to predict whole-watershed behavior? Practical problems to be considered include the effects of land use, atmospheric deposition, and climate on streamflow, water quality, and sediment dynamics, illustrated with data from experimental watersheds in North America, Scandinavia, and Europe. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts will be available as they are developed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Recommended and required reading will be specified at the first class session (with possible modifications as the semester proceeds). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1251-00L | Land-Climate Dynamics ![]() ![]() Number of participants limited to 36. Priority is given to the target groups: - Master Environmental Science, - Master Atmospheric and Climate Science and - PhD D-USYS until September 20th,2021. Waiting list will be deleted September 27th, 2021. | W | 3 KP | 2G | S. I. Seneviratne, R. Padrón Flasher | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The purpose of this course is to provide fundamental background on the role of land surface processes (vegetation, soil moisture dynamics, land energy and water balances) in the climate system. The course consists of 2 contact hours per week, including lectures, group projects and computer exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students can understand the role of land processes and associated feedbacks in the climate system. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Powerpoint slides will be made available | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: Introductory lectures in atmospheric and climate science Atmospheric physics -> Link and/or Climate systems -> Link | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-6217-00L | Using R for Data Analysis and Graphics (Part II) ![]() | W | 1.5 KP | 1G | M. Mächler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course provides the second part an introduction to the statistical software R for scientists. Topics are data generation and selection, graphical functions, important statistical functions, types of objects, models, programming and writing functions. Note: This part builds on "Using R... (Part I)", but can be taken independently if the basics of R are already known. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The students will be able to use the software R efficiently for data analysis, graphics and simple programming | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course provides the second part of an introduction to the statistical software R (https://www.r-project.org/) for scientists. R is free software that contains a huge collection of functions with focus on statistics and graphics. If one wants to use R one has to learn the programming language R - on very rudimentary level. The course aims to facilitate this by providing a basic introduction to R. Part II of the course builds on part I and covers the following additional topics: - Elements of the R language: control structures (if, else, loops), lists, overview of R objects, attributes of R objects; - More on R functions; - Applying functions to elements of vectors, matrices and lists; - Object oriented programming with R: classes and methods; - Tayloring R: options - Extending basic R: packages The course focuses on practical work at the computer. We will make use of the graphical user interface RStudio: www.rstudio.org | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | An Introduction to R. http://stat.ethz.ch/CRAN/doc/contrib/Lam-IntroductionToR_LHL.pdf | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basic knowledge of R equivalent to "Using R .. (part 1)" ( = 401-6215-00L ) is a prerequisite for this course. The course resources will be provided via the Moodle web learning platform. As from FS 2019, subscribing via Mystudies should *automatically* make you a student participant of the Moodle course of this lecture, which is at https://moodle-app2.let.ethz.ch/course/view.php?id=15522 |
Seite 1 von 1