Suchergebnis: Katalogdaten im Herbstsemester 2021
Maschineningenieurwissenschaften Bachelor | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5. Semester | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fokus-Vertiefung | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Engineering for Health Fokus-Koordinator: Prof. Bradley Nelson | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0509-00L | Microscale Acoustofluidics | W | 4 KP | 3G | J. Dual | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In this lecture the basics as well as practical aspects (from modelling to design and fabrication ) are described from a solid and fluid mechanics perspective with applications to microsystems and lab on a chip devices. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Understanding acoustophoresis, the design of devices and potential applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Linear and nonlinear acoustics, foundations of fluid and solid mechanics and piezoelectricity, Gorkov potential, numerical modelling, acoustic streaming, applications from ultrasonic microrobotics to surface acoustic wave devices | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Yes, incl. Chapters from the Tutorial: Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Microscale Acoustofluidics, T. Laurell and A. Lenshof, Ed., Royal Society of Chemistry, 2015 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Solid and fluid continuum mechanics. Notice: The exercise part is a mixture of presentation, lab sessions ( both compulsary) and hand in homework. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0524-00L | Continuum Mechanics I | W | 4 KP | 2V + 1U | E. Mazza, A. E. Ehret | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Konstitutive Gleichungen für strukturmechanische Berechnungen werden behandelt. Dies beinhaltet anisotrope lineare Elastizität, lineare Viskoelastizität, Plastizität und Viscoplastizität. Es werden die Grundlagen der Mikro-Makro Modellierung und der Laminattheorie eingeführt. Die theoretischen Ausführungen werden durch Beispiele aus Ingenieuranwendungen und Experimente ergänzt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Behandlung von Grundlagen zur Lösung kontinuumsmechanischer Probleme der Anwendung, mit besonderem Fokus auf konstitutive Gesetze. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Anisotrope Elastizität, Linearelastisches und linearviskoses Stoffverhalten, Viskoelastizität, mikro-makro Modellierung, Laminattheorie, Plastizität, Viscoplastizität, Beispiele aus der Ingenieuranwendung, Vergleich mit Experimenten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | ja | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0604-00L | Microrobotics | W | 4 KP | 3G | B. Nelson, N. Shamsudhin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Microrobotics is an interdisciplinary field that combines aspects of robotics, micro and nanotechnology, biomedical engineering, and materials science. The aim of this course is to expose students to the fundamentals of this emerging field. Throughout the course, the students apply these concepts in assignments. The course concludes with an end-of-semester examination. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The objective of this course is to expose students to the fundamental aspects of the emerging field of microrobotics. This includes a focus on physical laws that predominate at the microscale, technologies for fabricating small devices, bio-inspired design, and applications of the field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Main topics of the course include: - Scaling laws at micro/nano scales - Electrostatics - Electromagnetism - Low Reynolds number flows - Observation tools - Materials and fabrication methods - Applications of biomedical microrobots | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The powerpoint slides presented in the lectures will be made available as pdf files. Several readings will also be made available electronically. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The lecture will be taught in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0621-00L | Microsystems I: Process Technology and Integration | W | 6 KP | 3V + 3U | M. Haluska, C. Hierold | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Die Stundenten werden in die Grundlagen der Mikrosystemtechnik, der Halbleiterphysik und der Halbleiterprozesstechnologie eingeführt und erfahren, wie die Herstellung von Mikrosystemen in einer Serie von genau definierten Prozessschritten erfolgt (Gesamtprozess und Prozessablauf). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Die Stundenten sind mit den Grundlagen der Mikrosystemtechnik und der Prozesstechnologie für Halbleiter vertraut und verstehen die Herstellung von Mikrosystemen durch die Kombination von Einzelprozesschritten ( = Gesamtprozess oder Prozessablauf). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Einführung in die Mikrosystemtechnik (MST) und in mikroelektromechanische Systeme (MEMS) - Grundlegende Siliziumtechnologie: thermische Oxidation, Fotolithografie und Ätztechnik, Diffusion und Ionenimplantation, Dünnschichttechnik. - Besondere Mikrosystemtechnologien: Volumen- und Oberflächenmikromechanik, Trocken- und Nassätzen, isotropisches und anisotropisches Ätzen, Herstellung von Balken und Membranen, Waferbonden, mechanische Eigenschaften von Dünnschichten. Die Anwendung ausgewählter Technologien wird anhand von Fallstudien nachgewiesen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts (online erhältlich) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | - S.M. Sze: Semiconductor Devices, Physics and Technology - W. Menz, J. Mohr, O.Paul: Microsystem Technology - Hong Xiao: Introduction to Semiconductor Manufacturing Technology - M. J. Madou: Fundamentals of Microfabrication and Nanotechnology, 3rd ed. - T. M. Adams, R. A. Layton: Introductory MEMS, Fabrication and Applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Voraussetzung: Physik I und II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-8101-00L | International Engineering: from Hubris to Hope | W | 4 KP | 3G | E. Tilley, M. Kalina | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Since Europe surrendered their colonial assets, engineers from rich countries have returned to the African continent to address the real and perceived ills that they felt technology could solve. And yet, 70 years on, the promise of technology has largely failed to deliver widespread, substantive improvements in the quality of life. Why? | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This course is meant for engineers who are interested in pursuing an ethical and relevant career internationally, and who are willing to examine the complex role that well-meaning foreigners have played and continue to play in the disappointing health outcomes that characterize much of the African continent. After completing the course, participants will be able to • critique the jargon and terms used by the international community, i.e. “development”, “aid”, “cooperation”, “assistance” “third world” “developing” “global south” “low and middle-income” and justify their own chosen terminology • recognize the role of racism and white-supremacy in the development of the Aid industry • understand the political, financial, and cultural reasons why technology and infrastructure have historically failed • Debate the merits of international engineering in popular culture and media • Propose improved SDG indicators that address current shortcomings • Compare the engineering curricula of different countries to identify relative strengths and shortcomings • Explain the inherent biases of academic publishing and its impact on engineering failure • Analyse linkages between the rise of philanthropy and strategic priority areas • Recommend equitable, just funding models to achieve more sustainable outcomes • Formulate a vision for the international engineer of the future | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Role of international engineering during colonialism Transition of international engineering following colonialism White saviourism and racism in international engineering International engineering in popular culture The missing role of Engineering Education Biases academic publishing The emerging role in Global Philanthropy The paradox of International funding | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | McGoey, L. (2015). No such thing as a free gift: The Gates Foundation and the price of philanthropy. Verso Books. Moyo, D. (2009). Dead aid: Why aid is not working and how there is a better way for Africa. Macmillan. Munk, N. (2013). The idealist: Jeffrey Sachs and the quest to end poverty. Signal. Rodney, W. (2018). How europe underdeveloped africa. Verso Trade. Rosenberg, N. (1970). Economic development and the transfer of technology: Some historical perspectives. Technology and Culture, 11(4), 550-575. Singer, H. W. (1970). Dualism revisited: a new approach to the problems of the dual society in developing countries. The journal of development studies, 7(1), 60-75. Van der Post, L. (1953). Venture to the Interior. Random House. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0385-10L | Biomedical Imaging | W | 6 KP | 5G | S. Kozerke, K. P. Prüssmann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Introduction and analysis of medical imaging technology including X-ray procedures, computed tomography, nuclear imaging techniques using single photon and positron emission tomography, magnetic resonance imaging and ultrasound imaging techniques. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | To understand the physical and technical principles underlying X-ray imaging, computed tomography, single photon and positron emission tomography, magnetic resonance imaging, ultrasound and Doppler imaging techniques. The mathematical framework is developed to describe image encoding/decoding, point-spread function/modular transfer function, signal-to-noise ratio, contrast behavior for each of the methods. Matlab exercises are used to implement and study basic concepts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - X-ray imaging - Computed tomography - Single photon emission tomography - Positron emission tomography - Magnetic resonance imaging - Ultrasound/Doppler imaging | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes and handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Webb A, Smith N.B. Introduction to Medical Imaging: Physics, Engineering and Clinical Applications; Cambridge University Press 2011 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Analysis, Linear Algebra, Physics, Basics of Signal Theory, Basic skills in Matlab programming | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0393-10L | Bioelectronics and Biosensors | W | 6 KP | 2V + 2U | J. Vörös, M. F. Yanik | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The course introduces bioelectricity and the sensing concepts that enable obtaining information about neurons and their networks. The sources of electrical fields and currents in the context of biological systems are discussed. The fundamental concepts and challenges of measuring bioelectronic signals and the basic concepts to record optogenetically modified organisms are introduced. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | During this course the students will: - learn the basic concepts of bioelectronics - be able to solve typical problems in bioelectronics - learn about the remaining challenges in this field | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Lecture 1. Introduction to the field of bioelectronics and its challenges Sources of bioelectronic signals L2. Membrane and Transport L3. Action potential and Hodgkin-Huxley L4. Action potential and Hodgkin-Huxley 2 Measuring bioelectronic signals L5. Detection and Noise L6. Measuring currents in solutions, nanopore sensing and patch clamp pipettes L7. Measuring potentials in solution and core conductance L8. Measuring electronic signals with wearable electronics, ECG, EEG L9. Measuring mechanical signals with bioelectronics In vivo stimulation and recording L10. Functional electric stimulation L11. In vivo electrophysiology Optical recording and control of neurons (optogenetics) L12. Measuring neurons optically, fundamentals of optical microscopy L13. Fluorescent probes and scanning microscopy, optogenetics, in vivo microscopy L14. Measuring chemical signals | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The course has its own script including the exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The course requires an open attitude to the interdisciplinary approach of bioelectronics. In addition, it requires undergraduate entry-level familiarity with electric & magnetic fields/forces, resistors, capacitors, electric circuits, differential equations, calculus, probability calculus, Fourier transformation & frequency domain, lenses / light propagation / refractive index, pressure, diffusion. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-0021-00L | Materials and Mechanics in Medicine | W | 4 KP | 3G | M. Zenobi-Wong, J. G. Snedeker | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Understanding of physical and technical principles in biomechanics, biomaterials, and tissue engineering as well as a historical perspective. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Understanding of physical and technical principles in biomechanics, biomaterials, tissue engineering. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Biomaterials, Tissue Engineering, Tissue Biomechanics, Implants. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | course website on Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Introduction to Biomedical Engineering, 3rd Edition 2011, Autor: John Enderle, Joseph Bronzino, ISBN 9780123749796 Academic Press | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-0203-00L | Bewegungs- und Sportbiomechanik | W | 4 KP | 3G | W. R. Taylor, R. List | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Vermitteln der Methode den menschlichen Bewegungsapparat als (bio-)mechanisches System zu betrachten. Erstellen des Zusammenhanges von Bewegungen im Alltag und im Sport zu Verletzungen und Beschwerden, Prävention und Rehabilitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | - Die Studierenden können den Bewegungsapparat als ein mechanisches System darstellen. - Sie analysieren und beschreiben menschliche Bewegungen entsprechend den Gesetzen der Mechanik. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Die Bewegungs- und Sportbiomechanik befasst sich mit den Eigenschaften des Bewegungsapparates und deren Verknüpfung zur Mechanik. Die Vorlesung beinhaltet einerseits Themenkreise wie funktionelle Anatomie, Charakteristik von elementaren menschlichen Bewegungen (Gehen, Laufen, etc.), und beachtet Bewegungen im Sport aus mechanischer Sicht. Ferner werden einfache Betrachtungen zur Belastungsanalysen diverser Gelenke in verschiedenen Situationen diskutiert. Im Weiteren werden Fragen der Statik und Dynamik starrer Körper, und die inverse Dynamik, die in der Biomechanik relevant sind, behandelt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-1504-00L | Physical Human Robot Interaction (pHRI) | W | 4 KP | 2V + 2U | O. Lambercy | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course focuses on the emerging, interdisciplinary field of physical human-robot interaction, bringing together themes from robotics, real-time control, human factors, haptics, virtual environments, interaction design and other fields to enable the development of human-oriented robotic systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The objective of this course is to give an introduction to the fundamentals of physical human robot interaction, through lectures on the underlying theoretical/mechatronics aspects and application fields, in combination with a hands-on lab tutorial. The course will guide students through the design and evaluation process of such systems. By the end of this course, you should understand the critical elements in human-robot interactions - both in terms of engineering and human factors - and use these to evaluate and de- sign safe and efficient assistive and rehabilitative robotic systems. Specifically, you should be able to: 1) identify critical human factors in physical human-robot interaction and use these to derive design requirements; 2) compare and select mechatronic components that optimally fulfill the defined design requirements; 3) derive a model of the device dynamics to guide and optimize the selection and integration of selected components into a functional system; 4) design control hardware and software and implement and test human-interactive control strategies on the physical setup; 5) characterize and optimize such systems using both engineering and psychophysical evaluation metrics; 6) investigate and optimize one aspect of the physical setup and convey and defend the gained insights in a technical presentation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course provides an introduction to fundamental aspects of physical human-robot interaction. After an overview of human haptic, visual and auditory sensing, neurophysiology and psychophysics, principles of human-robot interaction systems (kinematics, mechanical transmissions, robot sensors and actuators used in these systems) will be introduced. Throughout the course, students will gain knowledge of interaction control strategies including impedance/admittance and force control, haptic rendering basics and issues in device design for humans such as transparency and stability analysis, safety hardware and procedures. The course is organized into lectures that aim to bring students up to speed with the basics of these systems, readings on classical and current topics in physical human-robot interaction, laboratory sessions and lab visits. Students will attend periodic laboratory sessions where they will implement the theoretical aspects learned during the lectures. Here the salient features of haptic device design will be identified and theoretical aspects will be implemented in a haptic system based on the haptic paddle (https://relab.ethz.ch/downloads/open-hardware/haptic-paddle.html), by creating simple dynamic haptic virtual environments and understanding the performance limitations and causes of instabilities (direct/virtual coupling, friction, damping, time delays, sampling rate, sensor quantization, etc.) during rendering of different mechanical properties. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Will be distributed on Moodle before the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Abbott, J. and Okamura, A. (2005). Effects of position quantization and sampling rate on virtual-wall passivity. Robotics, IEEE Transactions on, 21(5):952 - 964. Adams, R. and Hannaford, B. (1999). Stable haptic interaction with virtual environments. Robotics and Automation, IEEE Transactions on, 15(3):465 - 474. Buerger, S. and Hogan, N. (2007). Complementary stability and loop shaping for improved human-robot interaction. Robotics, IEEE Transactions on, 23(2):232 - 244. Burdea, G. and Brooks, F. (1996). Force and touch feedback for virtual reality. John Wiley & Sons New York NY. Colgate, J. and Brown, J. (1994). Factors affecting the z-width of a haptic display. In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Conference on, pages 3205 -3210 vol. 4. Diolaiti, N., Niemeyer, G., Barbagli, F., and Salisbury, J. (2006). Stability of haptic rendering: Discretization, quantization, time delay, and coulomb effects. Robotics, IEEE Transactions on, 22(2):256 - 268. Gillespie, R. and Cutkosky, M. (1996). Stable user-specific haptic rendering of the virtual wall. In Proceedings of the ASME International Mechanical Engineering Congress and Exhibition, volume 58, pages 397 - 406. Hannaford, B. and Ryu, J.-H. (2002). Time-domain passivity control of haptic interfaces. Robotics and Automation, IEEE Transactions on, 18(1):1 - 10. Hashtrudi-Zaad, K. and Salcudean, S. (2001). Analysis of control architectures for teleoperation systems with impedance/admittance master and slave manipulators. The International Journal of Robotics Research, 20(6):419. Hayward, V. and Astley, O. (1996). Performance measures for haptic interfaces. In ROBOTICS RESEARCH-INTERNATIONAL SYMPOSIUM, volume 7, pages 195-206. Citeseer. Hayward, V. and Maclean, K. (2007). Do it yourself haptics: part i. Robotics Automation Magazine, IEEE, 14(4):88 - 104. Leskovsky, P., Harders, M., and Szeekely, G. (2006). Assessing the fidelity of haptically rendered deformable objects. In Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2006 14th Symposium on, pages 19 - 25. MacLean, K. and Hayward, V. (2008). Do it yourself haptics: Part ii [tutorial]. Robotics Automation Magazine, IEEE, 15(1):104 - 119. Mahvash, M. and Hayward, V. (2003). Passivity-based high-fidelity haptic rendering of contact. In Robotics and Automation, 2003. Proceedings. ICRA '03. IEEE International Conference on, volume 3, pages 3722 - 3728. Mehling, J., Colgate, J., and Peshkin, M. (2005). Increasing the impedance range of a haptic display by adding electrical damping. In Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005. World Haptics 2005. First Joint, pages 257 - 262. Okamura, A., Richard, C., and Cutkosky, M. (2002). Feeling is believing: Using a force-feedback joystick to teach dynamic systems. JOURNAL OF ENGINEERING EDUCATION-WASHINGTON, 91(3):345 - 350. O'Malley, M. and Goldfarb, M. (2004). The effect of virtual surface stiffness on the haptic perception of detail. Mechatronics, IEEE/ASME Transactions on, 9(2):448 - 454. Richard, C. and Cutkosky, M. (2000). The effects of real and computer generated friction on human performance in a targeting task. In Proceedings of the ASME Dynamic Systems and Control Division, volume 69, page 2. Salisbury, K., Conti, F., and Barbagli, F. (2004). Haptic rendering: Introductory concepts. Computer Graphics and Applications, IEEE, 24(2):24 - 32. Weir, D., Colgate, J., and Peshkin, M. (2008). Measuring and increasing z-width with active electrical damping. In Haptic interfaces for virtual environment and teleoperator systems, 2008. haptics 2008. symposium on, pages 169 - 175. Yasrebi, N. and Constantinescu, D. (2008). Extending the z-width of a haptic device using acceleration feedback. Haptics: Perception, Devices and Scenarios, pages 157-162. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Notice: The registration is limited to 26 students There are 4 credit points for this lecture. The lecture will be held in English. The students are expected to have basic control knowledge from previous classes. http://www.relab.ethz.ch/education/courses/phri.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-1714-00L | Biocompatible Materials | W | 4 KP | 3V | K. Maniura, M. Rottmar, M. Zenobi-Wong | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course covers the follwing topics: 1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials. 2. The concept of biocompatibility. 3. Introduction into methodology used in biomaterials research and application. 4. Introduction to different material classes in use for medical applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed. A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts are deposited online (moodle). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Literature: - Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013 - Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011 (available online via ETH library) Handouts and references therin. |
- Seite 1 von 1