Search result: Catalogue data in Autumn Semester 2021

Computer Science Master Information
Master Studies (Programme Regulations 2009)
Focus Courses
Focus Courses in Visual Computing
Focus Elective Courses Visual Computing
NumberTitleTypeECTSHoursLecturers
252-0543-01LComputer Graphics Information
Does not take place this semester.
W8 credits3V + 2U + 2A
AbstractThis course covers some of the fundamental concepts of computer graphics generation of photorealistic images from digital representations of 3D scenes and image-based methods for recovering digital scene representations from captured images.
Learning objectiveAt the end of the course the students will be able to build a rendering system. The students will study the basic principles of rendering and image synthesis. In addition, the course is intended to stimulate the students' curiosity to explore the field of computer graphics in subsequent courses or on their own.
ContentThis course covers fundamental concepts of modern computer graphics. Students will learn about 3D object representations and the details of how to generate photorealistic images from digital representations of 3D scenes. Starting with an introduction to 3D shape modeling, geometry representation and texture mapping, we will move on to the physics of light transport, acceleration structures, appearance modeling and Monte Carlo integration. We will apply these principles for computing light transport of direct and global illumination due to surfaces and participating media. We will end with an overview of modern image-based capture and image synthesis methods, covering topics such as geometry and material capture, light-fields and depth-image based rendering.
Lecture notesno
LiteratureBooks:
High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting
Multiple view geometry in computer vision
Physically Based Rendering: From Theory to Implementation
Prerequisites / NoticePrerequisites:
Fundamentals of calculus and linear algebra, basic concepts of algorithms and data structures, programming skills in C++, Visual Computing course recommended.
The programming assignments will be in C++. This will not be taught in the class.
252-0546-00LPhysically-Based Simulation in Computer Graphics Information W5 credits2V + 1U + 1AV. da Costa de Azevedo, B. Solenthaler, B. Thomaszewski
AbstractThis lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an addtional course project, topics from the lecture will be implemented into a 3D game or a comparable application.
Learning objectiveThis lecture provides an introduction to physically-based animation in computer graphics and gives an overview of fundamental methods and algorithms. The practical exercises include three assignments which are to be solved in small groups. In an addtional course project, topics from the lecture will be implemented into a 3D game or a comparable application.
ContentThe lecture covers topics in physically-based modeling,
such as particle systems, mass-spring models, finite difference and finite element methods. These approaches are used to represent and simulate deformable objects or fluids with applications in animated movies, 3D games and medical systems. Furthermore, the lecture covers topics such as rigid body dynamics, collision detection, and character animation.
Prerequisites / NoticeFundamentals of calculus and physics, basic concepts of algorithms and data structures, basic programming skills in C++. Knowledge on numerical mathematics as well as ordinary and partial differential equations is an asset, but not required.
263-2400-00LReliable and Trustworthy Artificial Intelligence Information W6 credits2V + 2U + 1AM. Vechev
AbstractCreating reliable and explainable probabilistic models is a fundamental challenge to solving the artificial intelligence problem. This course covers some of the latest and most exciting advances that bring us closer to constructing such models.
Learning objectiveThe main objective of this course is to expose students to the latest and most exciting research in the area of explainable and interpretable artificial intelligence, a topic of fundamental and increasing importance. Upon completion of the course, the students should have mastered the underlying methods and be able to apply them to a variety of problems.

To facilitate deeper understanding, an important part of the course will be a group hands-on programming project where students will build a system based on the learned material.
ContentThis comprehensive course covers some of the latest and most important research advances (over the last 3 years) underlying the creation of safe, trustworthy, and reliable AI (more information here: https://www.sri.inf.ethz.ch/teaching/reliableai21):

* Adversarial Attacks on Deep Learning (noise-based, geometry attacks, sound attacks, physical attacks, autonomous driving, out-of-distribution)
* Defenses against attacks
* Combining gradient-based optimization with logic for encoding background knowledge
* Complete Certification of deep neural networks via automated reasoning (e.g., via numerical relaxations, mixed-integer solvers).
* Probabilistic certification of deep neural networks
* Training deep neural networks to be provably robust via automated reasoning
* Fairness (different notions of fairness, certifiably fair representation learning)
* Federated Learning (introduction, security considerations)
Prerequisites / NoticeWhile not a formal requirement, the course assumes familiarity with basics of machine learning (especially linear algebra, gradient descent, and neural networks as well as basic probability theory). These topics are usually covered in “Intro to ML” classes at most institutions (e.g., “Introduction to Machine Learning” at ETH).

For solving assignments, some programming experience in Python is expected.
263-5210-00LProbabilistic Artificial Intelligence Information Restricted registration - show details W8 credits3V + 2U + 2AA. Krause
AbstractThis course introduces core modeling techniques and algorithms from machine learning, optimization and control for reasoning and decision making under uncertainty, and study applications in areas such as robotics.
Learning objectiveHow can we build systems that perform well in uncertain environments? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as robotics. The course is designed for graduate students.
ContentTopics covered:
- Probability
- Probabilistic inference (variational inference, MCMC)
- Bayesian learning (Gaussian processes, Bayesian deep learning)
- Probabilistic planning (MDPs, POMPDPs)
- Multi-armed bandits and Bayesian optimization
- Reinforcement learning
Prerequisites / NoticeSolid basic knowledge in statistics, algorithms and programming.
The material covered in the course "Introduction to Machine Learning" is considered as a prerequisite.
  •  Page  1  of  1