Suchergebnis: Katalogdaten im Frühjahrssemester 2023
Doktorat Materialwissenschaft ![]() Weitere Informationen unter: https://www.ethz.ch/de/doktorat.html | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0324-00L | GL zum Bemessen von Kunststoffbauteilen ![]() | W | 4 KP | 2V + 1U | G. P. Terrasi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Unverstärkte und faserverstärkte Kunststoffe (FVWS) für tragende Anwendungen. Bemessungsansätze für unverstärkte Kunststoffe unter ruhender, kombinierter und schwingender Belastung. Stabilität und Bruchmechanik. Processing. Zusammensetzung von FVWS. Eigenschaften von Faser- und Matrixwerkstoffen. Verarbeitung und Bemessung von FVWS: Kontinuums- und Netztheorie, Stabilität und Langzeitverhalten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Vermitteln der Grundlagen bezüglich Ingenieurbemessung mit unverstärkten und faserverstärkten Kunststoffen (FVWS) für tragende Anwendungen. Parallel zu der Präsentation der Grundlagen werden viele praktische Anwendungen behandelt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | 1. Introduction 1.1 Retrospective view 1.2 State-of-the-art 1.3 Prospects for the future 1.4 References 2. Engineering design with neat polymers and with random-oriented fibre reinforced polymers 2.1 Scope of applications 2.2 Static loading 2.21 Tensile- and compressive loading 2.22 Flexural loading 2.23 Combined loading 2.24 Buckling 2.3 Fatigue 2.4 Brittle failure 2.5 Variable loading 2.6 Thermal stresses 2.7 To be subjected to aggressive chemicals 2.8 Processing of neat polymers 2.9 References 3. Composition and manufacturing techniques for fibre reinforced polymers 3.1 Introduction 3.2 Materials 3.21 Matrices 3.22 Fibres 3.3 Manufacturing techniques 3.31 Hand lay-up moulding 3.32 Directed fibre spray-up moulding 3.33 Low pressure compression moulding 3.34 High pressure compression moulding 3.35 Pultrusion 3.36 Centrifugal casting 3.37 Filament winding 3.38 Robots 3.39 Remarks about the design of moulds 3.4 References 4. Engineering design with high performance fibre reinforced polymers 4.1 Introduction 4.2 The unidirectional ply (or lamina) 4.21 Stiffness of the unidirectional ply 4.22 Thermal properties of the unidirectional ply 4.23 Failure criteria for the unidirectional ply 4.3 rules fort he design of components made out of high performance fibre reinforced polymers 4.4 Basics of the net theory 4.41 Assumptions and definitions 4.42 Estimation of the fibre forces in a plies 4.5 Basics of the classical laminate theory (CLT) 4.51 Assumptions and definitions 4.52 Elastic constants of multilayer laminate 4.53 Strains and curvatures in a multilayer laminate due to mechanical loading 4.54 Calculation of the stresses in the unidirectional plies due to mechanical loading 4.55 Strains and curvatures in a multilayer laminate due to mechanical and thermal loading 4.56 Calculation of the stresses in the unidirectional plies due to mechanical and thermal loading 4.57 Procedure of stress analysis 4.58 Taking account of the non-linear behaviour of the matrix 4.59 Admissible stresses, evaluation of existing stresses 4.6 Puck’s action plane fracture criteria 4.7 Selected problems of buckling 4.8 Selected problems of fatigue 4.9 References | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The script will be distributed at the beginning of the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | The script is including a comprehensive list of references | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0513-00L | Mechanics of Soft Materials and Tissues | W | 4 KP | 3G | A. E. Ehret | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | An introduction to concepts for the constitutive modelling of highly deformable materials with non-linear properties is given in application to rubber-like materials and soft biological tissues. Related experimental methods for materials characterization and computational methods for simulation are also briefly addressed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After successful completion of the course students are able to • name important examples of the wide range of non-linear mechanical behaviours displayed by soft materials and tissues. • describe typical experimental set-ups for characterization soft materials and to critically interpret the corresponding experimental data. • explain basic physical concepts to relate the structure and mechanical properties of rubber-like materials and soft biological tissues. • discuss and safely apply mathematical concepts for modelling these materials. • explain, select and define suitable material models for rubber-like materials and soft biological tissues. • evaluate the response predicted by constitutive models in simple load cases. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Soft solids: rubber-like materials, gels, soft biological tissues Non-linear continuum mechanics: kinematics, stress, balance laws Mechanical characterization: experiments and their interpretation Constitutive modeling: basic principles Large strain elasticity: hyperelastic materials Rubber-elasticity: statistical vs. phenomenological models Biomechanics of soft tissues: composites, anisotropy, heterogeneity Dissipative behavior: examples and the concept of internal variables. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Accompanying learning materials will be provided or made available for download during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Recommended text: G.A. Holzapfel, Nonlinear Solid Mechanics - A continuum approach for engineering, 2000 L.R.G. Treloar, The physics of rubber elasticity, 3rd ed., 2005 P. Haupt, Continuum Mechanics and Theory of Materials, 2nd ed., 2002 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basic knowledge in continuum mechanics is recommended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0515-00L | Continuum Mechanics 2 | W | 4 KP | 2V + 1U | E. Mazza, R. Hopf | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | An introduction to finite deformation continuum mechanics and nonlinear material behavior. Coverage of basic tensor- manipulations and calculus, descriptions of kinematics, and balance laws . Discussion of invariance principles and mechanical response functions for elastic materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | To provide a modern introduction to the foundations of continuum mechanics and prepare students for further studies in solid mechanics and related disciplines. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | 1. Tensors: algebra, linear operators 2. Tensors: calculus 3. Kinematics: motion, gradient, polar decomposition 4. Kinematics: strain 5. Kinematics: rates 6. Global Balance: mass, momentum 7. Stress: Cauchy's theorem 8. Stress: alternative measures 9. Invariance: observer 10. Material Response: elasticity | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | None. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Recommended texts: (1) Nonlinear solid mechanics, G.A. Holzapfel (2000). (2) An introduction to continuum mechanics, M.B. Rubin (2003). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0636-00L | Soft and Biohybrid Robotics ![]() ![]() | W | 4 KP | 3G | R. Katzschmann | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Soft and biohybrid robotics are emerging fields taking inspiration from nature to create robots that are inherently safer to interact with. You learn how to create structures, actuators, sensors, models, controllers, and machine learning architectures exploiting the deformable nature of soft robots. You also learn how to apply soft robotic principles to challenges of your research domain. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Learning Objective 1: Solve a robotics challenge with a soft robotic design Step 1: Formulate suitable functional requirements for the challenge Step 2: Select soft robotic actuator material Step 3: Design and fabrication approach suitable for the challenge Step 4: Basic controller for robotic functionality Learning Objective 2: Formulate modeling, control, and learning frameworks for highly articulated robots in real-life scenarios Step 1: Formulate the dynamic skills needed for the real-life scenario Step 2: Pick + combine suitable multiphysics modeling, control + learning techniques for this scenario Step 3: Evaluate the modeling/control approach for a real-life scenario Step 4: Modify and enhance the modeling/control approach and repeat the evaluation Step 5: Choose a learning approach for complex robotic skills Learning Objective 3: Apply the principles of mechanical impedance and embodied intelligence to soft robotic challenges in various domains Step 1: Identify the moving aspects of the problem Step 2: Choose and design the passive and actively-controlled degrees of freedom Step 3: Pick the actuation material based on suitability to your challenge Step 4: Design in detail multiple combinations of body and brain Step 5: Simulate, build, test, fail, and repeat this often and quickly until the soft robot works for simple settings Step 6: Upgrade and validate the robot for a suitable performance under real-world conditions Learning Objective 4: Rethink robotic approaches by moving towards designs made of living materials Step 1: Identify what problems could be easier to solve with a complex living material Step 2: Scout for available works that have potentially tackled the problem with a living material Step 3: Formulate a hypothesis for your new approach with a living material Step 4: Design a minimum viable prototype (MVP) that suitably highlights your new approach | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Students will learn about the latest research advances in material technologies, fabrication, modeling, and machine learning to design, simulate, build, and control soft and biohybrid robots. Part 1: Functional and intelligent materials for use in soft and biohybrid robotic applications Part 2: Design and design morphologies of soft robotic actuators and sensors Part 3: Fabrication techniques including 3D printing, casting, roll-to-roll, tissue engineering Part 4: Biohybrid robotics including microrobots and macrorobots; tissue engineering Part 5: Mechanical modeling including minimal parameter models, finite-element models, and ML-based models Part 6: Closed-loop controllers of soft robots that exploit the robot's impedance and dynamics for locomotion and manipulation tasks Part 7: Machine Learning approaches to soft robotics, for design synthesis, modeling, and control Regular assignments throughout the semester will teach the participants to implement the skills and knowledge learned during the class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | All class materials including slides, recordings, assignments, pre-reads, and tutorials can be found on the Moodle page of the class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | 1) Yasa et al. "An Overview of Soft Robotics." Annu. Rev. Control Robot. Auton. Syst. (2023). 6:1–29. 2) Polygerinos et al. "Soft robotics: Review of fluid‐driven intrinsically soft devices; manufacturing, sensing, control, and applications in human‐robot interaction." Advanced Engineering Materials 19.12 (2017): 1700016. 3) Cianchetti, et al. "Biomedical applications of soft robotics." Nature Reviews Materials 3.6 (2018): 143-153. 4) Ricotti et al. "Biohybrid actuators for robotics: A review of devices actuated by living cells." Science Robotics 2.12 (2017). 5) Sun et al. "Biohybrid robotics with living cell actuation." Chemical Society Reviews 49.12 (2020): 4043-4069. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | - Prerequesites are dynamics, controls, and intro to robotics. - Only for students at master or PhD level. - Due to the limited places, the priority goes first to students from the Robotics, Systems and Control Master and second to the other study programs where the course is offered. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0946-00L | Macromolecular Engineering: Networks and Gels | W | 4 KP | 4G | M. Tibbitt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course will provide an introduction to the design and physics of soft matter with a focus on polymer networks and hydrogels. The course will integrate fundamental aspects of polymer physics, engineering of soft materials, mechanics of viscoelastic materials, applications of networks and gels in biomedical applications including tissue engineering, 3D printing, and drug delivery. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The main learning objectives of this course are: 1. Identify the key characteristics of soft matter and the properties of ideal and non-ideal macromolecules. 2. Calculate the physical properties of polymers in solution. 3. Predict macroscale properties of polymer networks and gels based on constituent chemical structure and topology. 4. Design networks and gels for industrial and biomedical applications. 5. Read and evaluate research papers on recent research on networks and gels and communicate the content orally to a multidisciplinary audience. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Class notes and handouts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Polymer Physics by M. Rubinstein and R.H. Colby; samplings from other texts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Physics I+II, Thermodynamics I+II | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0980-00L | Biofluiddynamics | W | 4 KP | 2V + 1U | D. Obrist, P. Jenny | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Introduction to the fluid dynamics of the human body and the modeling of physiological flow processes (biomedical fluid dynamics). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | A basic understanding of fluid dynamical processes in the human body. Knowledge of the basic concepts of fluid dynamics and the ability to apply these concepts appropriately. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This lecture is an introduction to the fluid dynamics of the human body (biomedical fluid dynamics). For selected topics of human physiology, we introduce fundamental concepts of fluid dynamics (e.g., creeping flow, incompressible flow, flow in porous media, flow with particles, fluid-structure interaction) and use them to model physiological flow processes. The list of studied topics includes the cardiovascular system and related diseases, blood rheology, microcirculation, respiratory fluid dynamics and fluid dynamics of the inner ear. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture notes are provided electronically. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | A list of books on selected topics of biofluiddynamics can be found on the course web page. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
327-1206-00L | Advanced Building Blocks for Soft Materials | W | 5 KP | 4G | E. Dufresne, A. Anastasaki | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Part 1 of the course (Spring semester) focuses on the chemistry of the building blocks and to learn how structures can be manipulated by chemistry, composition and phase behaviour. The goal is to learn what can be done, both in an idealized research environment and in the realm of industrial scale production. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The goal of the two courses combined is to present the students with a toolbox for materials engineers to design, study and make soft materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Where physics, chemistry and biology meet engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Copies of the slides and a set of lecture notes will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | For the first and the second part combined there are a few books of recommended reading, but their is no textbook that we will rigorously follow. Introduction to Soft Matter: Synthetic and Biological Self-Assembling Materials Paperback by Ian W. Hamley ISBN-13: 978-0470516102 ISBN-10: 0470516100 Structured Fluids: Polymers, Colloids, Surfactants by Thomas A. Witten, Philip A. Pincus (OXford) ISBN-13: 978-0199583829 ISBN-10: 019958382X | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
327-2201-00L | Transport Phenomena II | W | 5 KP | 4G | J. Vermant | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Numerical and analytical methods for real-world "Transport Phenomena"; atomistic understanding of transport properties based on kinetic theory and mesoscopic models; fundamentals, applications, and simulations | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The teaching goals of this course are on five different levels: (1) Deep understanding of fundamentals: kinetic theory, mesoscopic models, ... (2) Ability to use the fundamental concepts in applications (3) Insight into the role of boundary conditions (4) Knowledge of a number of applications (5) Flavor of numerical techniques: finite elements, lattice Boltzmann, ... | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Thermodynamics of Interfaces Interfacial Balance Equations Interfacial Force-Flux Relations Polymer Processing Transport Around a Sphere Refreshing Topics in Equilibrium Statistical Mechanics Kinetic Theory of Gases Kinetic Theory of Polymeric Liquids Transport in Biological Systems Dynamic Light Scattering | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The course is based on the book D. C. Venerus and H. C. Öttinger, A Modern Course in Transport Phenomena (Cambridge University Press, 2018) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | 1. D. C. Venerus and H. C. Öttinger, A Modern Course in Transport Phenomena (Cambridge University Press, 2018) 2. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd Ed. (Wiley, 2001) 3. Deen,W. Analysis of Transport Phenomena, Oxford University Press, 2012 4. R. B. Bird, Five Decades of Transport Phenomena (Review Article), AIChE J. 50 (2004) 273-287 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Complex numbers. Vector analysis (integrability; Gauss' divergence theorem). Laplace and Fourier transforms. Ordinary differential equations (basic ideas). Linear algebra (matrices; functions of matrices; eigenvectors and eigenvalues; eigenfunctions). Probability theory (Gaussian distributions; Poisson distributions; averages; moments; variances; random variables). Numerical mathematics (integration). Statistical thermodynamics (Gibbs' fundamental equation; thermodynamic potentials; Legendre transforms; Gibbs' phase rule; ergodicity; partition functions; Einstein's fluctuation theory). Linear irreversible thermodynamics (forces and fluxes; Fourier's, Newton's and Fick's laws for fluxes). Hydrodynamics (local equilibrium; balance equations for mass, momentum, energy and entropy). Programming and simulation techniques (Matlab, Monte Carlo simulations). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
327-6200-00L | Reactivity in Micelles and Vesicles Findet dieses Semester nicht statt. | W | 1 KP | 1V | keine Angaben | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Discussion of different aspects of the chemical reactivity in micelles an in vesicles (liposomes) as polymolecular compartments.. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Deeper understandin of micelles and vesicles as self-organizing reaction compartments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | With a few selected recent examples, properties of micelles and vesicles will be discussed with the respect to applications as reaction compartments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | No script. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0638-00L | MaP Distinguished Lecture Series on Engineering with Living Materials This course is primarily designed for MSc and doctoral students. Guests are welcome. Former title: MaP Distinguished Lecture Series on Soft Robotics | W | 1 KP | 2S | R. Katzschmann, M. Filippi, X.‑H. Qin, Z. Zhang | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course is an interdisciplinary colloquium on the engineering of biohybrid systems and robotics. Internationally renowned speakers from academia and industry give lectures about their cutting-edge research, which highlights the state-of-the-art and frontiers in the field of engineering with living materials and biohybrids. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Participants become acquainted with the state-of-the-art and frontiers in biohybrid systems and robotics, which is a topic of global and future relevance from the field of materials and process engineering. The self-study of relevant literature and active participation in discussions following presentations by internationally renowned speakers stimulate critical thinking and allow participants to deliberately discuss challenges and opportunities with leading academics and industrial experts and to exchange ideas within an interdisciplinary community. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This course is a colloquium involving a selected mix of internationally renowned speakers from academia and industry who present their cutting-edge research in the field of engineered systems using living materials. In particular, the course will cover fundamentals of bioengineering at a multicellular level (biofabrication), as well as examples of manufacturing and application of living cells to engineered systems for medical applications and beyond. Speakers will show how to combine living cells with non-living, synthetic materials to realize bio-hybrid systems to be applied to many fields of human life, ranging from biomedicine to robotics, biosensing, ecology, and architecture. It will be shown how bio-hybrid technologies and cutting-edge engineering techniques can support cell proliferation and even enhance their cell functions. The course will cover materials and approaches for the biofabrication of living tissue, seen as a biomedical model for pathophysiological discovery research, or as transplantable grafts for tissue regeneration. Speakers will illustrate how living species can contribute to ecological approaches in town planning (such as CO2 sequestration), sensing and processor technologies enabled by connective and signaling abilities of cells, and motile systems actuated by contractile cells (bio-hybrid robots). The main learning objective is to learn about: materials and techniques to build intelligent biological systems for future, sustainable societies; mechanisms of cell and tissue programmability; and applications in bio-robotics, communication, sensing technologies, and medical engineering. The self-study of relevant pre-read literature provided in advance of each lecture serves as a basis for active participation in the critical discussions following each presentation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Selected scientific pre-read literature (around two articles per lecture) relevant for and discussed during the lectures is posted in advance on the course web page. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | This course is taught by a selection of internationally renowned speakers from academia and industry working in the field of bio-hybrid systems and robotics. This lecture series is focusing on the recent trends in engineering with living materials. Participants should have a background in tissue engineering, material science, and/or robotics. To obtain credits, students need to: (i) attend 80% of all lectures; (ii) submit a one-page abstract of 3 different lectures. The performance will be assessed with a "Pass/Fail" format. On-site attendance to the lectures is preferred to foster in-person contacts. However, for lectures given by online speakers, a Zoom link to attend remotely will be provided on Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
327-4200-00L | Bio-Inspired Active and Adaptive Materials Findet dieses Semester nicht statt. | W | 3 KP | 2G | R. Nicolosi Libanori | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | This course offers a comprehensive description of the molecular mechanisms that are at the origin of the functions carried out by complex out-of-equilibrium materials systems in living organisms. Through discussions, we will demonstrate strategies of implementing such molecular-based vital functions found in biological systems into synthetic materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | By the end of this course, students will be able to correlate dissipative molecular mechanisms with active and interactive functions found in living organisms. They will be able to apply and integrate key out-of-equilibrium concepts towards functional active and adaptive devices and material systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Dynamic molecular systems - Active, adaptive and autonomous molecular systems - Temporal regulation in biological and bio-inspired systems - Temporal control in biological systems - Temporal control in bio-inspired systems - Autonomous molecular structures - Out-of-equilibrium biological and bio-inspired systems - Decay of metastable and steady-state systems - Transient self-assembly with active environments and active structural systems - Motion and work generation - Molecular motion mechanisms in biology - Bio-inspired motors and walkers - Harnessing molecular work at the macroscale - Information processing in autonomous molecular systems - Sensing, adaptation and communication in biology - Reaction-diffusion in continuous systems | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Copies of the slides will be made available for download before each lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0610-01L | Interface Engineering of Materials | W | 6 KP | 4G | C.‑J. Shih | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Advances in interface engineering, the control of molecular and charge behaviour between two phases, are driving the development of new technologies across many industrial and scientific fields. This course will review the fundamental engineering concepts required to analyse and solve problems at liquid-solid and solid-solid interfaces. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Introduce the students to the engineering principles of energy, mass, and electron transport at the liquid-solid and solid-solid interfaces, for the applications in materials processing and electronic devices. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | PART A: Solid-Liquid Interface Chapter 1: Interface Phenomena Chapter 2: Crystallization and Crystal Growth Chapter 3: Electrical Double Layer Chapter 4: Electroosmotic Flow PART B: Solid-Solid Interface Chapter 5: Fundamentals of Electronic Materials Chapter 6: Junction Characteristics Chapter 7: Solar Cells and Light Emitting Diodes Chapter 8: Field-Effect Transistors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Hiemenz P.C., Rajagopalan R., Principles of Colloid and Surface Chemistry, 3rd Edition. Deen W.M., Analysis of Transport Phenomena, 2nd Edition. Sze S.M. and Ng K.K., Physics of Semiconductor Devices, 3rd Edition. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Engineering Mathematics, Transport Phenomena, Undergraduate Physical Chemistry | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0941-00L | Introduction to Macromolecular Chemistry | W | 4 KP | 3G | D. Opris, T. L. Choi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Basic definitions, types of polyreactions, constitution of homo- and copolymers, networks, configurative and conformative aspects, contour length, coil formation, mobility, glass temperature, rubber elasticity, molecular weight distribution, energetics of and examples for polyreactions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Understanding the significance of molecular size, constitution, configuration and conformation of synthetic and natural macromolecules for their specific physical and chemical properties. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | This introductory course on macromolecular chemistry discusses definitions, introduces types of polyreactions, and compares chain and step-growth polymerizations. It also treats the constitution of polymers, homo- and copolymers, networks, configuration and conformation of polymers. Topics of interest are contour length, coil formation, the mobility in polymers, glass temperature, rubber elasticity, molecular weight distribution, energetics of polyreactions, and examples for polyreactions (polyadditions, polycondensations, polymerizations). Selected polymerization mechanisms and procedures are discussed whenever appropriate throughout the course. Some methods of molecular weight determination are introduced. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Course materials (consisting of personal notes and distributed paper copies) are sufficient for exam preparation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | The course will be taught in English. Complicated expressions will also be given in German. Questions are welcome in English or German. The written examination will be in English, answers in German are acceptable. A basic chemistry knowledge is required. PhD students who need recognized credit points are required to pass the written exam. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
636-0112-00L | Analytical Methods and Lab-on-Chip Technology for Biology and Molecular Diagnostics | W | 4 KP | 3G | P. S. Dittrich | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Analytical methods are the key for a comprehensive understanding of biological systems. This course introduces modern bioanalytical concepts and methods that are applied in the life sciences. Techniques for sample preparation, fluid handling, and detection, including microfluidics, microarray technology, immunological methods, sensors and biosensors, and various spectroscopic detection techniques | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students will learn the basic principles, potential and limitations of analytical methods and lab-on-chip technology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Analytical methods are the key for a comprehensive understanding of biological systems. This course introduces into modern bioanalytical concepts and methods that are applied in the life sciences. The lecture includes discussions of highly topical studies. Topics will include: Targets: Biomolecules, biomarkers, signalling factors – what and where to measure Detection: Fluorescence spectroscopy, related techniques and label-free detection methods Basic principles of microfluidics/lab-on-chip technology Applied microfluidics: Single-cell analysis, medical applications and point-of-care diagnostic Microarray technology Immunological methods Sensors and biosensors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts during the course . | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
752-3104-00L | Food Rheology II | W | 3 KP | 2G | P. A. Fischer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Food Rheology II addresses special topics in rheology such as suspension and emulsion rheology, extensional rheology, optical methods in rheology, and interfacial rheology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The rheology of complex materials such as solutions, emulsions, and suspension will be discussed. In addition, several advanced rheological techniques (extension, rheo-optics, interfacial rheology) will be introduced and discussed in light of material characterization of complex fluids. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Lectures will be given on structure and rheology of complex fluids (8h), optical methods in rheology (4h), extensional rheology (4h), and interfacial rheology (6h). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Notes will be handed out during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Provided in the lecture notes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Attending Food Rheology I is beneficial but not mandatory. A short repetition of the basic principles of rheology will be given in the beginning of Food Rheology II. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen![]() |
|
Seite 1 von 1