Suchergebnis: Katalogdaten im Herbstsemester 2023
Rechnergestützte Wissenschaften Master ![]() | ||||||
![]() Höchstens eine der beiden Lerneinheiten 263-5210-00L Probabilistic Artificial Intelligence bzw. 252-0535-00L Advanced Machine Learning darf als Kernfach angerechnet werden. Eine Anrechnung der anderen Lerneinheit in einer anderen Kategorie ist jedoch zulässig. Für die Kategoriezuordnung wenden Sie sich an das Studiensekretariat (www.math.ethz.ch/studiensekretariat). | ||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|---|
263-5210-00L | Probabilistic Artificial Intelligence ![]() ![]() | W | 8 KP | 3V + 2U + 2A | A. Krause | |
Kurzbeschreibung | This course introduces core modeling techniques and algorithms from machine learning, optimization and control for reasoning and decision making under uncertainty, and study applications in areas such as robotics. | |||||
Lernziel | How can we build systems that perform well in uncertain environments? How can we develop systems that exhibit "intelligent" behavior, without prescribing explicit rules? How can we build systems that learn from experience in order to improve their performance? We will study core modeling techniques and algorithms from statistics, optimization, planning, and control and study applications in areas such as robotics. The course is designed for graduate students. | |||||
Inhalt | Topics covered: - Probability - Probabilistic inference (variational inference, MCMC) - Bayesian learning (Gaussian processes, Bayesian deep learning) - Probabilistic planning (MDPs, POMPDPs) - Multi-armed bandits and Bayesian optimization - Reinforcement learning | |||||
Voraussetzungen / Besonderes | Solid basic knowledge in statistics, algorithms and programming. The material covered in the course "Introduction to Machine Learning" is considered as a prerequisite. |
Seite 1 von 1