Suchergebnis: Katalogdaten im Herbstsemester 2023

Rechnergestützte Wissenschaften Master Information
Vertiefungsgebiete
Fluiddynamik
Eine der beiden Lerneinheiten
151-0103-00L Fluiddynamik II
151-0109-00L Turbulent Flows
ist obligatorisch.
Studierenden, welche deutschsprachigen Lehrveranstaltungen folgen können, wird 151-0103-00L Fluiddynamik II empfohlen.
NummerTitelTypECTSUmfangDozierende
151-0103-00LFluiddynamik IIO3 KP2V + 1UP. Jenny
KurzbeschreibungEbene Potentialströmungen: Stromfunktion und Potential, Singularitätenmethode, instationäre Strömung, aerodynamische Begriffe.
Drehungsbehaftete Strömungen: Wirbelstärke und Zirkulation, Wirbeltransportgleichung, Wirbelsätze von Helmholtz und Kelvin.
Kompressible Strömungen: Stromfadentheorie, senkrechter und schiefer Verdichtungsstoss, Laval-Düse, Prandtl-Meyer-Expansion, Reibungseinfluss.
LernzielErweiterung der Grundlagen der Fluiddynamik.
Grundbegriffe, Phänomene und Gesetzmässigkeiten von drehungsfreien, drehungsbehafteten und eindimensionalen kompressiblen Strömungen vermitteln.
InhaltEbene Potentialströmungen: Stromfunktion und Potential, komplexe Darstellung, Singularitätenmethode, instationäre Strömung, aerodynamische Begriffe.
Drehungsbehaftete Strömungen: Wirbelstärke und Zirkulation, Wirbeldynamik und Wirbeltransportgleichung, Wirbelsätze von Helmholtz und Kelvin.
Kompressible Strömungen: Stromfadentheorie, senkrechter und schiefer Verdichtungsstoss, Laval-Düse, Prandtl-Meyer-Expansion, Reibungseinfluss.
Skriptja
(Siehe auch untenstehende Information betreffend der Literatur.)
LiteraturP.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 5th ed., 2011 (includes a free copy of the DVD "Multimedia Fluid Mechanics")

P.K. Kundu, I.M. Cohen, D.R. Dowling: Fluid Mechanics, Academic Press, 6th ed., 2015 (does NOT include a free copy of the DVD "Multimedia Fluid Mechanics")
Voraussetzungen / BesonderesAnalysis I/II, Fluiddynamik I, Grundbegriffe der Thermodynamik (Thermodynamik I).

Für die Formulierung der Grundlagen der Fluiddynamik werden unabdingbar Begriffe und Ergebnisse aus der Mathematik benötigt. Erfahrungsgemäss haben einige Studierende damit Schwierigkeiten.
Es wird daher dringend empfohlen, insbesondere den Stoff über
- elementare Funktionen (wie sin, cos, tan, exp, deren Umkehrfunktionen, Ableitungen und Integrale) sowie über
- Vektoranalysis (Gradient, Divergenz, Rotation, Linienintegral ("Arbeit"), Integralsätze von Gauss und von Stokes, Potentialfelder als Lösungen der Laplace-Gleichung) zu wiederholen. Ferner wird der Umgang mit
- komplexen Zahlen und Funktionen (siehe Anhang des Skripts Analysis I/II Teil C und Zusammenfassung im Anhang C des Skripts Fluiddynamik) benötigt.

Literatur z.B.: U. Stammbach: Analysis I/II, Skript Teile A, B und C.
151-0109-00LTurbulent FlowsW4 KP2V + 1UP. Jenny
KurzbeschreibungInhalt
- Laminare und turbulente Strömungen, Turbulenzentstehung - Statistische Beschreibung: Mittelung, Turbulenzenergie, Dissipation, Schliessungsproblem - Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum - Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht - Wandturbulenz. Turbulente Grenzschicht, Kanalströmung - Turbulenzberechnung
LernzielDie Vorlesung vermittelt einen Einblick in grundlegende physikalische Phänomene turbulenter Strömungen und in Gesetzmässigkeiten zu ihrer Beschreibung, basierend auf den strömungsmechanischen Grundgleichungen und daraus abgeleiteten Gleichungen. Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung werden dargestellt.
Inhalt- Eigenschaften laminarer, transitioneller und turbulenter Strömungen
- Turbulenzbeeinflussung und Turbulenzentstehung, hydrodynamische Instabilität und Transition
- Statistische Beschreibung: Mittelung, Gleichungen für mittlere Strömung, turbulente Schwankungen, Turbulenzenergie, Reynoldsspannungen, Dissipation. Schliessungsproblem
- Skalenbetrachtungen. Homogene isotrope Turbulenz, Korrelationen, Fourierzerlegung, Energiespektrum, Gitterturbulenz
- Freie Turbulenz. Nachlauf, Freistrahl, Mischungsschicht
- Wandturbulenz. Turbulente Grenzschicht, Kanalströmung
- Grundlagen zur Berechnung turbulenter Strömungen und Elemente der Turbulenzmodellierung (Wirbelzähigkeitsmodelle, k-epsilon-Modell).
SkriptLecture notes in English, zusätzliches schriftliches Begleitmaterial auf Deutsch
LiteraturS.B. Pope, Turbulent Flows, Cambridge University Press, 2000
151-0532-00LNonlinear Dynamics and Chaos IW4 KP2V + 2UG. Haller
KurzbeschreibungBasic facts about nonlinear systems; stability and near-equilibrium dynamics; bifurcations; dynamical systems on the plane; non-autonomous dynamical systems; chaotic dynamics.
LernzielThis course is intended for Masters and Ph.D. students in engineering sciences, physics and applied mathematics who are interested in the behavior of nonlinear dynamical systems. It offers an introduction to the qualitative study of nonlinear physical phenomena modeled by differential equations or discrete maps. We discuss applications in classical mechanics, electrical engineering, fluid mechanics, and biology. A more advanced Part II of this class is offered every other year.
Inhalt(1) Basic facts about nonlinear systems: Existence, uniqueness, and dependence on initial data.

(2) Near equilibrium dynamics: Linear and Lyapunov stability

(3) Bifurcations of equilibria: Center manifolds, normal forms, and elementary bifurcations

(4) Nonlinear dynamical systems on the plane: Phase plane techniques, limit sets, and limit cycles.

(5) Time-dependent dynamical systems: Floquet theory, Poincare maps, averaging methods, resonance
SkriptThe class lecture notes will be posted electronically after each lecture. Students should not rely on these but prepare their own notes during the lecture.
Voraussetzungen / Besonderes- Prerequisites: Analysis, linear algebra and a basic course in differential equations.

- Exam: two-hour written exam in English.

- Homework: A homework assignment will be due roughly every other week. Hints to solutions will be posted after the homework due dates.
151-0213-00LFluid Dynamics with the Lattice Boltzmann Method
Findet dieses Semester nicht statt.
W4 KP3GI. Karlin
KurzbeschreibungThe course provides an introduction to theoretical foundations and practical usage of the Lattice Boltzmann Method for fluid dynamics simulations.
LernzielMethods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations.

During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on.

Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course).

The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others.

Optionally, we offer an opportunity to complete a project of student's choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available.
InhaltThe course builds upon three parts:
I Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples.
II Theoretical basis of statistical mechanics and kinetic equations.
III Lattice Boltzmann method for real-world applications.

The content of the course includes:

1. Background: Elements of statistical mechanics and kinetic theory:
Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory: Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation;
Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids.

2. Basics of the Lattice Boltzmann Method and Simulations:
Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures.

3. Hands on:
Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc).

4. Practical issues of LBM for fluid dynamics simulations:
Lattice Boltzmann simulations of turbulent flows;
numerical stability and accuracy.

5. Microflow:
Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations.

6. Advanced lattice Boltzmann methods:
Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries.

7. Introduction to LB models beyond hydrodynamics:
Relativistic fluid dynamics; flows with phase transitions.
SkriptLecture notes on the theoretical parts of the course will be made available.
Selected original and review papers are provided for some of the lectures on advanced topics.
Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided.
Voraussetzungen / BesonderesThe course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend.
151-0709-00LStochastic Methods for Engineers and Natural ScientistsW4 KP4GD. W. Meyer-Massetti
KurzbeschreibungThe course provides an introduction into stochastic methods that are applicable for example for the description and modeling of turbulent and subsurface flows. Moreover, mathematical techniques are presented that are used to quantify uncertainty in various engineering applications.
LernzielBy the end of the course you should be able to mathematically describe random quantities and their effect on physical systems. Moreover, you should be able to develop basic stochastic models of such systems.
Inhalt- Probability theory, single and multiple random variables, mappings of random variables
- Estimation of statistical moments and probability densities based on data
- Stochastic differential equations, Ito calculus, PDF evolution equations
- Monte Carlo integration with importance and stratified sampling
- Markov-chain Monte Carlo sampling
- Control-variate and multi-level Monte Carlo estimation
- Statistical tests for means and goodness-of-fit
All topics are illustrated with engineering applications.
SkriptDetailed lecture notes will be provided.
LiteraturSome textbooks related to the material covered in the course:
Stochastic Methods: A Handbook for the Natural and Social Sciences, Crispin Gardiner, Springer, 2010
The Fokker-Planck Equation: Methods of Solutions and Applications, Hannes Risken, Springer, 1996
Turbulent Flows, S.B. Pope, Cambridge University Press, 2000
Spectral Methods for Uncertainty Quantification, O.P. Le Maitre and O.M. Knio, Springer, 2010
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
Medien und digitale Technologiengeprüft
Problemlösunggeprüft
Persönliche KompetenzenKreatives Denkengeprüft
Kritisches Denkengeprüft
Integrität und Arbeitsethikgeprüft
Selbststeuerung und Selbstmanagement geprüft
151-0125-00LHydrodynamics and Cavitation
Findet dieses Semester nicht statt.
W4 KP3GO. Supponen
KurzbeschreibungThis course builds on the foundations of fluid dynamics to describe hydrodynamic flows and provides an introduction to cavitation.
LernzielThe main learning objectives of this course are:
1. Identify and describe dominant effects in liquid fluid flows through physical modelling.
2. Identify hydrodynamic instabilities and discuss the stability region
3. Describe fragmentation of liquids
4. Explain tension, nucleation and phase-change in liquids.
5. Describe hydrodynamic cavitation and its consequences in physical terms.
6. Recognise experimental techniques and industrial and medical applications for cavitation.
InhaltThe course gives an overview on the following topics: hydrostatics, capillarity, hydrodynamic instabilities, fragmentation. Tension in liquids, phase change. Cavitation: single bubbles (nucleation, dynamics, collapse), cavitating flows (attached, cloud, vortex cavitation). Industrial applications and measurement techniques.
SkriptClass notes and handouts
LiteraturLiterature will be provided in the course material.
Voraussetzungen / BesonderesFluid dynamics I & II or equivalent
401-5950-00LSeminar in Fluid Dynamics for CSE Belegung eingeschränkt - Details anzeigen W4 KP2SP. Jenny
KurzbeschreibungEnlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics
LernzielEnlarged knowledge and practical abilities in fundamentals and applications of Computational Fluid Dynamics
Voraussetzungen / BesonderesContact Prof. P. Jenny before the beginning of the semester
  •  Seite  1  von  1