Suchergebnis: Katalogdaten im Herbstsemester 2023
Biochemie – Chemische Biologie Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kernfächer und Kompensationsfächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kernfächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
529-0733-02L | Chemical Biology and Synthetic Biochemistry | O | 6 KP | 3G | K. Lang, M. Fottner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Overview of modern chemical biology and synthetic biochemistry techniques, focussed on protein modification and labeling and on methods to endow proteins with novel functionalities. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | After taking this course, students should be capable of the following: A) Recall different possibilities for modifying proteins in vitro and in vivo and their applications in a biological context, B) Understand the chemical and biochemical consequences of modifications and assess the different reaction possibilities in the context of in vivo - in vitro, C) Critically analyze and assess current chemical biology articles D) Question the approaches learned and apply them to new biological problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | principles of protein labeling and protein modification (fluorescent proteins, enzyme-mediated labeling, bioorthogonal chemistries) advanced genetic code expansion methods (amber suppression, orthogonal ribosomes, unnatural base pairs, genome engineering and genome editing) directed evolution and protein engineering chemical biology of ubiquitin and targeted protein degradation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | A script will not be handed out. Handouts to the lecture will be provided through moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Citations from the original literature relevant to the individual lectures will be assigned during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Knowledge provided in the bachelor lectures 'Nucleic Acids and Carbohydrates' and 'Proteins and Lipids' is assumed for this lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0240-00L | Chemical Biology - Peptides | O | 6 KP | 3G | H. Wennemers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | An advanced course on the synthesis, properties and function of peptides in chemistry and biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Knowledge of the synthesis, properties and function of peptides in chemistry and biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Advanced peptide synthesis, conformational properties, combinatorial chemistry, therapeutic peptides, peptide based materials, peptides in nanotechnology, peptides in asymmetric catalysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Citations from the original literature relevant to the individual lectures will be assigned weekly. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Norbert Sewald, Hans Dieter Jakubke "Peptides: Chemistry and Biology", 1st edition, Wiley VCH, 2002. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0241-10L | Selectivity in Organic Synthesis | O | 6 KP | 3G | J. W. Bode | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Fundamentals of selective organic reactions, including current and historical examples of enantioselectivity, regioselectivity, chemoselectivity. Further aspects include recent developments in catalysis, strategies and tools for selective organic synthesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Understanding and explaining the origin of selectivity in organic synthesis and the application of selective organic reactions to the construction of complex organic and biological molecules. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Fundamental concepts and recent advances for the selective synthesis of complex organic molecules, including natural products, pharmaceuticals, and biological molecules. Key concepts include the development of enantioselective and regioselective catalysts, the identification of new reaction mechanisms and pathways, and technological advances for facilitating the synthesis of organic molecules. Analysis of key primarily literature including identification of trends, key precendents, and emerging topics will be emphasized. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | will be provided in class and online | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Suggesting Textbooks Anslyn and Dougherty, Modern Physical Organic Chemistry, 1st Ed., University Science Books, 2006. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompensationsfächer Mit Kompensationsfächern können zweimal nicht bestandene Kernfächer kompensiert werden. Die Zuordnung der entsprechenden Lerneinheiten zur reglementarischen Kategorie "Kernfächer und Kompensationsfächer" im Leistungsüberblick erfolgt erst auf Antrag der Studierenden beim Studiensekretariat des Studiengangs. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0615-01L | Biochemical and Polymer Reaction Engineering | W | 6 KP | 3G | P. Arosio | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Polymerization reactions and processes. Homogeneous and heterogeneous (emulsion) kinetics of free radical polymerization. Post treatment of polymer colloids. Bioprocesses for the production of molecules and therapeutic proteins. Kinetics and design of aggregation processes of macromolecules and proteins. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The aim of the course is to learn how to design polymerization reactors and bioreactors to produce polymers and proteins with the specific product qualities that are required by different applications in chemical, pharmaceutical and food industry. This activity includes the post-treatment of polymer latexes, the downstream processing of proteins and the analysis of their colloidal behavior. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | We will cover the fundamental processes and the operation units involved in the production of polymeric materials and proteins. In particular, the following topics are discussed: Overview on the different polymerization processes. Kinetics of free-radical polymerization and use of population balance models. Production of polymers with controlled characteristics in terms of molecular weight distribution. Kinetics and control of emulsion polymerization. Surfactants and colloidal stability. Aggregation kinetics and aggregate structure in conditions of diffusion and reaction limited aggregation. Modeling and design of colloid aggregation processes. Physico-chemical characterization of proteins and description of enzymatic reactions. Operation units in bioprocessing: upstream, reactor design and downstream. Industrial production of therapeutic proteins. Characterization and engineering of protein aggregation. Protein aggregation in biology and in biotechnology as functional materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Scripts are available on the web page of the Arosio-group: http://www.arosiogroup.ethz.ch/education.html Additional handout of slides will be provided during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | R.J. Hunter, Foundations of Colloid Science, Oxford University Press, 2nd edition, 2001 D. Ramkrishna, Population Balances, Academic Press, 2000 H.W. Blanch, D. S. Clark, Biochemical Engineering, CRC Press, 1995 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0243-01L | Transition Metal Catalysis: From Mechanisms to Applications | W | 6 KP | 3G | B. Morandi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Detailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Understanding and critical evaluation of current research in transition metal catalysis. Design of mechanistic experiments to elucidate reaction mechanisms. Synthetic relevance of transition metal catalysis. Students will also learn about writing an original research proposal during a workshop. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Detailed discussion of selected modern transition metal catalyzed reactions from a synthetic and mechanistic viewpoint. Synthetic applications of these reactions. Introduction and application of tools for the elucidation of mechanisms. Selected examples of topics include: C-H activation, C-O activation, C-C activation, redox active ligands, main group redox catalysis, bimetallic catalysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Lecture slides will be provided online. A Handout summarizing important concepts in organometallic and physical organic chemistry will also be provided. Useful references and handouts will also be provided during the workshop. Slides will be uploaded 1-2 days before each lecture on http://morandi.ethz.ch/education.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Primary literature and review articles will be cited during the course. The following textbooks can provide useful support for the course: - Anslyn and Dougherty, Modern Physical Organic Chemistry, 1st Ed., University Science Books. - Crabtree R., The Organometallic Chemistry of the Transition Metals, John Wiley & Sons, Inc. - Hartwig J., Organotransition Metal Chemistry: From Bonding to Catalysis, University Science Books. - J. P. Collman, L. S. Hegedus, J. R. Norton, R. G. Finke, Principles and Applications of Organotransition Metal Chemistry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Required level: Courses in organic and physical chemistry (kinetics in particular) of the first and second year as well as ACI and III | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Wahlfächer | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Nummer | Titel | Typ | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
535-0030-00L | Pharmaceutical Immunology II & Therapeutic Proteins Als Voraussetzung muss entweder die 535-0830-00L Pharmaceutical Immunology I oder 551-0317-00L Immunologie I besucht worden sein. | W | 3 KP | 3G | C. Halin Winter, D. Neri | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In this course, various topics related to the development, GMP production and application of therapeutic proteins will be discussed. Furthermore, students will expand their training in pharmaceutical immunology and will be introduced to the basic concepts of pharmaceutical product quality management. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students know and understand: - basic mechanisms and regulation of the immune response - the pathogenic mechanisms of the most important immune-mediated disorders - the concepts of vaccination and cancer immunotherapy - the most frequently used expression systems for the production of therapeutic proteins - the use of protein engineering tools for modifying different features of therapeutic proteins - the mechanism of action of selected therapeutic proteins and their application - basic concepts in the GMP production of therapeutic proteins | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The course consists of two parts: In the first part, students will complete their training in Pharmaceutical Immunology. This part particularly focuses on the pathogenic mechanisms of immune-mediated diseases, vaccination and cancer immunotherapy. Deepened knowledge of immunology will be relevant for understanding the mechanism of action of many therapeutic proteins, as well as for understanding one major concern related to the use of protein-based drugs, namely, immunogenicity. The second part focuses on topics related to the development and application of therapeutic proteins, such as protein expression, protein engineering, reducing immunogenicity, and GMP production of therapeutic proteins. Furthermore, selected examples of approved therapeutic proteins will be discussed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts to the lectures will be available for downloading under http://www.pharma.ethz.ch/scripts/index | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | - Janeway's ImmunoBiology, by Kenneth Murphy (9th or 10th Edition) - Lecture Handouts - Paper References provided in the Scripts - EMEA Dossier for Humira | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: Either 535-0830-00L Pharmaceutical Immunology I or 551-0317-00L Immunology I | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
535-0230-00L | Medizinische Chemie I | W | 2 KP | 2V | J. Hall | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The lectures give an overview of selected drugs and the molecular mechanisms underlying their therapeutic effects in disease. The historical and modern-day methods by which these drugs were discovered and developed are described. Structure-function relationships and the biophysical rules underlying ligand-target interactions will be discussed and illustrated with examples. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Basic understanding of therapeutic agents with respect to molecular, pharmacological and pharmaceutical properties. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Molecular mechanisms of action of drugs. Structure function and biophysical basis of ligand-target interactions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Will be provided in parts before each individual lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | - G.L. Patrick, "An Introduction to Medicinal Chemistry", 5th edition, Oxford University Press - D. Steinhilber, M. Schubert-Zsilavecz, H.J. Roth, "Medizinische Chemie", Deutscher Apotheker Verlag Stuttgart (2005) - J.H. Block, J.M. Beale, "Organic Medicinal and Pharmaceutical Chemistry", 11th edition, Lippincott, Williams, Wilkins (2002) - A. Gringauz, "How Drugs Act and Why", Wiley (1997) - R. B. Silverman and M. W. Holladay, "The Organic Chemistry of Drug Design and Drug Action", 3rd edition, Elsevier | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Requirements: Knowledge of physical and organic chemistry, biochemistry and biology. Attendance of Medicinal Chemistry II in the spring semester. For Pharmacy and non-Pharmacy students, Medicinal Chemistry I and II are examined in a SINGLE examination (Jahresprüfung). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0313-00L | Microbiology (Part I) | W | 3 KP | 2V | W.‑D. Hardt, L. Eberl, B. Nguyen, J. Piel, M. Pilhofer, A. Vagstad | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Advanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Advanced class covering the state of the research in bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Updated handouts will be provided during the class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Current literature references will be provided during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | English The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0041-00L | Moderne Massenspektroskopie, gekoppelte Analysenmethoden, Chemometrie | W | 6 KP | 3G | R. Zenobi, B. Hattendorf, P. Sinués Martinez-Lozano | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Moderne Massenspektrometrie, Kopplung von Trenn- mit Identifikationsmethoden, Speziierung und Chemometrie | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Umfassende Kenntnis der vorgestellten analytischen Methoden und ihre Anwendungen in der Praxis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Kopplung von Trenn- mit Identifikationsmethoden wie GC-MS, LC-MS, GC-IR, LC-IR, LC-NMR etc.; Bedeutung der Speziierung. Moderne Massenspektrometrie: Flugzeit-, Orbitrap- und Ionen-Cyclotron-Resonanz-Massenspektrometrie, ICP-MS. Weiche Ionisationsmethoden, Desorptions-Methoden, Spray-Methoden. Bildgebende MS-Methoden. Einsatz statistischer Methoden und der Informatik zur Verarbeitung analytisch-chemischer Daten (Chemometrie). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Ein Skript wird online zur Verfügung gestellt. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Hinweise zur aktuellen Literatur werden in der Vorlesung bezw. im Skript gegeben | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Übungen sind in die Vorlesung integriert Voraussetzung: 529-0051-00 "Analytische Chemie I (3. Semester)" 529-0058-00 "Analytische Chemie II (4. Semester)" (oder äquivalent) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-1299-00L | Bioinformatics | W | 6 KP | 4G | S. Sunagawa, P. Beltrao, V. Boeva, A. Kahles, C. von Mering, N. Zamboni | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Students will study bioinformatic concepts in the areas of metagenomics, genomics, transcriptomics, proteomics, biological networks and biostatistics. Through integrated lectures, practical hands-on exercises and project work, students will also be trained in analytical and programming skills to meet the emerging increase in data-driven knowledge generation in biology in the 21st century. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students will have an advanced understanding of the underlying concepts behind modern bioinformatic analyses at genome, metagenome and proteome-wide scales. They will be familiar with the most common data types, where to access them, and how to analytically work with them to address contemporary questions in the field of biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Course participants have already acquired basic programming skills in UNIX, Python and R. Students bring their own computer with keyboard, internet access (browser) and software to connect to the ETH network via VPN. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0319-00L | Cellular Biochemistry (Part I) | W | 3 KP | 2V | U. Kutay, F. Allain, T. Kleele, I. Zemp | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Concepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Structural and functional details of individual cell components, regulation of their interactions, and various aspects of the regulation and compartmentalisation of biochemical processes. Topics include: biophysical and electrical properties of membranes; viral membranes; structural and functional insights into intracellular transport and targeting; vesicular trafficking and phagocytosis; post-transcriptional regulation of gene expression. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Scripts and additional material will be provided during the semester. Please contact Dr. Alicia Smith for assistance with the learning materials. (alicia.smith@bc.biol.ethz.ch) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Recommended supplementary literature (review articles and selected primary literature) will be provided during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | To attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0309-00L | Concepts in Modern Genetics Information for UZH students: Enrolment to this course unit only possible at ETH. No enrolment to module BIO348 at UZH. Please mind the ETH enrolment deadlines for UZH students: Link | W | 6 KP | 4V | Y. Barral, D. Bopp, A. Hajnal, O. Voinnet | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | This course focuses on the concepts of classical and modern genetics and genomics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Scripts and additional material will be provided during the semester. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0317-00L | Immunology I | W | 3 KP | 2V | M. Kopf, A. Oxenius | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Einführung in strukturelle und funktionelle Eigenschaften des Immunsystems. Grundlegendes Verständnis der Mechanismen und der Regulation einer Immunantwort. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Einführung in strukturelle und funktionelle Eigenschaften des Immunsystems. Grundlegendes Verständnis der Mechanismen und der Regulation einer Immunantwort. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | - Einleitung und historischer Hintergrund - Angeborene und adaptive Immunantwort, Zellen und Organe des Immunsystems - B Zellen und Antikörper - Generation von Diversität - Antigen-Präsentation und Histoinkompatibilitätsantigene (MHC) - Thymus und T Zellselektion - Autoimmunität - Zytotoxische T Zellen und NK Zellen - Th1 und Th2 Zellen, regulatorische T Zellen - Allergien - Hypersensitivititäten - Impfungen und immun-therapeutische Interventionen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Die Studenten haben elekronischen Zugriff auf die Vorlesungsunterlagen. Der Link ist unter "Lernmaterialien" zu finden. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | - Kuby, Immunology, 9th edition, Freemen + Co., New York, 2020 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Immunology I (WS) und Immunology II (SS) werden für D-BIOL Studenten in einer Sessionsprüfung als eine Lerneinheit geprüft. Alle anderen Studenten schreiben Einzelprüfungen für Immunologie I und Immunologie II. Alle Prüfungen (kombinierte Prüfung Immunologie I und II, Einzelprüfungen) werden in jeder Prüfungssession angeboten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0127-00L | Fundamentals of Biology III: Multicellularity | W | 8 KP | 6G | M. Stoffel, M. Künzler, O. Y. Martin, U. Suter, S. Werner, A. Wutz, S. C. Zeeman | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Vermittelt werden die grundlegenden Konzepte der Multizellularität, mit Schwerpunkt auf der molekularen Basis multizellularer biologischer Systeme und ihrer funktionellen Integration in kohärente Ganzheiten. Die strukturelle und funktionelle Spezialisierung wird anhand gemeinsamer und spezifischer Funktionen bei Pilzen, Pflanzen und Tieren (einschließlich des Menschen) diskutiert. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | 1. Die Studierenden können Vorteile und Herausforderungen, die mit dem Vielzellersein verbunden sind, beschreiben und eigenständige Lösungen skizzieren, die Organismen entwickelt haben, um mit den Herausforderungen der komplexen Vielzelligkeit umzugehen. 2. Die Studierenden können erklären, wie die inneren und äußeren Strukturen von Pilzen, Pflanzen und Tieren funktionieren, um Überleben, Wachstum, Verhalten und Fortpflanzung zu unterstützen. 3. Die Studierenden können die grundlegenden Wege und Mechanismen der zellulären Kommunikation erklären, die das zelluläre Verhalten regulieren (Zelladhäsion, Stoffwechsel, Proliferation, Reproduktion, Entwicklung). 4. Die Studierenden können beschreiben, wie sich aus einer einzelnen Zelle viele Zellen entwickeln, die jeweils unterschiedliche spezialisierte Funktionen haben. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Die Vorlesung führt in die strukturelle und funktionelle Spezialisierung bei Pilzen, Pflanzen und Tieren, einschließlich des Menschen, ein. Nach einem Überblick über die Vielfalt der eukaryotischen Organismen wird diskutiert, wie Pilze, Pflanzen, Tiere und Menschen Strukturen und Strategien entwickelt haben, um mit den Herausforderungen der Vielzelligkeit zurechtzukommen. Die molekularen Grundlagen der Kommunikation, Koordination und Differenzierung werden vermittelt und durch Schlüsselaspekte der Reproduktion, des Stoffwechsels, der Entwicklung und der Regeneration ergänzt. Die Themen umfassen Form und Funktion von Pilzen und Pflanzen, menschliche Anatomie und Physiologie, Stoffwechsel, Zellsignalisierung, Adhäsion, Stammzellen, Regeneration, Reproduktion und Entwicklung. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Alberts et al. 'Molecular Biology of the Cell' 6. Auflage Smith A.M., et al. "Pflanzenbiologie" Garland Science, New York, Oxford Campbell "Biologie", 11. Auflage | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Einige Vorlesungseinheiten werden in englischer Sprache gehalten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-1005-00L | Bioanalytics | W | 4 KP | 4G | P. Picotti, F. Allain, V. Korkhov, M. Pilhofer, R. Schlapbach, K. Weis, K. Wüthrich, weitere Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Der Kurs gibt eine Einführung in die wichtigsten der modernen biologischen Forschung zugrunde liegenden Labortechniken. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Für jede der besprochenen Techniken können die Studierenden am Ende des Kurses erklären: a) die physikalischen, chemischen und biologischen Prinzipien die der Technik zugrunde liegen, b) welche Anforderungen Technik an die verwendeten Proben stellt c) welche Rohdaten erhoben werden d) welche Annahmen und Zusatzdaten bei der Interpretation der Daten verwendet werden. e) wie die Daten und die Resultate der Analyse benutzt werden um biologische Fragen zu beantworten. Am Ende des Kurses werden die Studierenden in der Lage sein unter den besprochenen Techniken diejenigen auszuwählen, die am besten geeignet sind um eine bestimmte biologische Frage zu beantworten. Sie werden zusätzlich in der Lage sein die Vor- und Nachteile der in Frage kommenden Techniken zu diskutieren und zu beschreiben wie verschiedene Techniken kombiniert werden können um ein umfassenderes Verständnis der biologische Frage zu erhalten. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Der Kurs wird aus einer Kombination von Vorlesungen, Selbststudiumseinheiten und Übungen bestehen. Der Fokus des Kurses liegt auf folgenden Techniken: -DNA Sequenzierung - Chromatographische Techniken - Massenspektrometrie - UV/Vis- und Fluoreszensspektroskopie - Lichtmikroskopie - Elektronenmikroskopie - Röntgenkristallographie - NMR Spektroskopie | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Der Kurs wird durch eine Moodle Seite unterstützt auf der für den Kurs notwendigen Materialen zur Verfügung gestellt werden. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0004-01L | Classical Simulation of (Bio)Molecular Systems | W | 6 KP | 4G | P. H. Hünenberger, J. Dolenc, S. Riniker | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Introduction to classical (atomistic) computer simulation of (bio)molecular systems, development of skills to carry out and interpret these simulations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Molecular models, classical force fields, configuration sampling, molecular dynamics simulation, boundary conditions, electrostatic interactions, analysis of trajectories, free-energy calculations, structure refinement, applications in chemistry and biology. Exercises: hands-on computer exercises for learning progressively how to perform an analyze classical simulations (using the package GROMOS). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | The powerpoint slides of the lectures will be made available weekly on the website in pdf format (on the day preceding each lecture). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | See: www.csms.ethz.ch/education/CSBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Since the exercises on the computer do convey and test essentially different skills than those being conveyed during the lectures and tested at the oral exam, the results of the exercises are taken into account when evaluating the results of the exam (learning component, possible bonus of up to 0.25 points on the exam mark). For more information about the lecture: www.csms.ethz.ch/education/CSBMS | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0043-01L | Analytical Strategy | W | 6 KP | 3G | R. Zenobi, K. Eyer, S. Giannoukos, D. Günther | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Selbständige Erarbeitung von Lösungsvorschlägen für konkrete analytische Fragestellungen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Fähigkeit zur selbständigen Erarbeitung von Lösungsvorschlägen für konkrete analytische Fragestellungen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Selbständiges Erarbeiten von Strategien zum optimalen Einsatz von chemischen, biochemischen und physikalisch-chemischen Methoden der Analytik zur Lösung vorgegebener Probleme. Zusätzlich zu den Dozenten präsentieren Experten aus Industrie und Behörden konkrete analytische Problemstellungen aus ihrem Tätigkeitsbereich. Grundlagen der Probenahme. Aufbau und Einsatz mikroanalytischer Systeme. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Kopien der Aufgabenstellungen und Lösungsblätter werden kostenlos abgegeben | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Teilnahmebedingungen: Besuch der Veranstaltungen 529-0051-00 "Analytische Chemie I (3. Semester)" 529-0058-00 "Analytische Chemie II (4. Semester)" (oder äquivalent) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0615-01L | Biochemical and Polymer Reaction Engineering | W | 6 KP | 3G | P. Arosio | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Polymerization reactions and processes. Homogeneous and heterogeneous (emulsion) kinetics of free radical polymerization. Post treatment of polymer colloids. Bioprocesses for the production of molecules and therapeutic proteins. Kinetics and design of aggregation processes of macromolecules and proteins. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The aim of the course is to learn how to design polymerization reactors and bioreactors to produce polymers and proteins with the specific product qualities that are required by different applications in chemical, pharmaceutical and food industry. This activity includes the post-treatment of polymer latexes, the downstream processing of proteins and the analysis of their colloidal behavior. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | We will cover the fundamental processes and the operation units involved in the production of polymeric materials and proteins. In particular, the following topics are discussed: Overview on the different polymerization processes. Kinetics of free-radical polymerization and use of population balance models. Production of polymers with controlled characteristics in terms of molecular weight distribution. Kinetics and control of emulsion polymerization. Surfactants and colloidal stability. Aggregation kinetics and aggregate structure in conditions of diffusion and reaction limited aggregation. Modeling and design of colloid aggregation processes. Physico-chemical characterization of proteins and description of enzymatic reactions. Operation units in bioprocessing: upstream, reactor design and downstream. Industrial production of therapeutic proteins. Characterization and engineering of protein aggregation. Protein aggregation in biology and in biotechnology as functional materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Scripts are available on the web page of the Arosio-group: http://www.arosiogroup.ethz.ch/education.html Additional handout of slides will be provided during the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | R.J. Hunter, Foundations of Colloid Science, Oxford University Press, 2nd edition, 2001 D. Ramkrishna, Population Balances, Academic Press, 2000 H.W. Blanch, D. S. Clark, Biochemical Engineering, CRC Press, 1995 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0939-00L | Cell Biophysics | W | 6 KP | 4G | T. Zambelli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Applying two fundamental principles of thermodynamics (entropy maximization and Gibbs energy minimization), an analytical model is derived for a variety of biological phenomena at the molecular as well as cellular level, and critically compared with the corresponding experimental data in the literature. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Engineering uses the laws of physics to predict the behavior of a system. Biological systems are so diverse and complex prompting the question whether we can apply unifying concepts of theoretical physics coping with the multiplicity of life’s mechanisms. Objective of this course is to show that biological phenomena despite their variety can be analytically described using only two principles from statistical mechanics: maximization of the entropy and minimization of the Gibbs free energy. Starting point of the course is the probability theory, which enables to derive step-by-step the two pillars of thermodynamics from the perspective of statistical mechanics: the maximization of entropy according to the Boltzmann’s law as well as the minimization of the Gibbs free energy. Then, an assortment of biological phenomena at the molecular and cellular level (e.g. cytoskeletal polymerization, action potential, photosynthesis, gene regulation, morphogen patterning) will be examined at the light of these two principles with the aim to derive a quantitative expression describing their behavior. Each analytical model is finally validated by comparing it with the corresponding experimental results from the literature. By the end of the course, students will also learn to critically evaluate the concepts of making an assumption and making an approximation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | • Basics of theory of probability • Boltzmann's law • Entropy maximization and Gibbs free energy minimization • Ligand-receptor: two-state systems and the MWC model • Random walks, diffusion, crowding • Electrostatics for salty solutions • Elasticity: fibers and membranes • Molecular motors • Action potential: Hodgkin-Huxley model • Photosynthesis and vision • Gene regulation • Development: Turing patterns Theory and corresponding exercises are merged together during the classes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | No lecture notes because the two proposed textbooks are more than exhaustive! An extra hour (Mon 17.00 o'clock - 18.00) will be proposed via ZOOM to solve together the exercises of the previous week. !!!!! I am using OneNote. All lectures and exercises will be broadcast via ZOOM (the link of the recordings will be available in Moodle on Fri, 22 Dec after the last lesson) !!!!! | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | • (Statistical Mechanics) K. Dill, S. Bromberg, "Molecular Driving Forces", 2nd Edition, Garland Science, 2010. • (Biophysics) R. Phillips, J. Kondev, J. Theriot, H. Garcia, "Physical Biology of the Cell", 2nd Edition, Garland Science, 2012. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Participants need a good command of • differentiation and integration of a function with one or more variables (basics of Analysis), • Newton's and Coulomb's laws (basics of Mechanics and Electrostatics). Notions of vectors in 2D and 3D are beneficial. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0231-00L | Organic Chemistry III: Introduction to Asymmetric Synthesis | W | 4 KP | 3G | E. M. Carreira | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Methoden der asymmetrischen Synthese | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Verständnis der Prinzipien der diastereoseletiven Synthese. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Konformationsanalyse: azyklische und zyklische Systeme; Diastereoselektive sigmatrope Umlagerungen; Diastereoselektive Additionen an C=O Bindungen: Cram- und Felkin-Anh Modelle, Wechselwirkungen zwischen C=O und Lewissäuren, Chelatkontrollierte Reaktionen; Chemie der Enolate, selektive Herstellung; Asymmetrische Enolat Alkylierung; Aldolreaktionen, Allylierung und Crotylierung; Zyklisierungen, Baldwin's Regeln; Diastereoselektive Olefinfunktionalisierungen: Hydroborierung, Dihydroxylierung, Epoxidierung. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | E. M. Carreira and L. Kvaerno Classics in Stereoselective Synthesis, Wiley-VCH 2009 Evans' Problems in Organic Chemistry App | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
|
- Seite 1 von 2 Alle