Search result: Catalogue data in Autumn Semester 2023
Biochemistry – Chemical Biology Bachelor ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
529-0011-02L | General Chemistry (Inorganic Chemistry) I ![]() | O | 3 credits | 2V + 1U | A. Togni | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to the chemistry of ionic equilibria: Acids and bases, redox reactions, formation of coordination complexes and precipitation reactions | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding and describing ionic equilibria from both a qualitative and a quantitative perspective | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Chemical equilibrium and equilibrium constants, mono- and polyprotic acids and bases in aqueous solution, calculation of equilibrium concentrations, acidity functions, Lewis acids, acids in non-aqueous solvents, redox reactions and equilibria, Galvanic cells, electrode potentials, Nernst equation, coordination chemistry, stepwise formation of metal complexes, solubility | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Copies of the course slides as well as other documents will be provided as pdf files via the moodle platform. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | C. E. Housecroft & E. C. Constable: Chemistry, An Introduction to Organic, Inorganic and Physical Chemistry, 4th Edition, Prentice Hall / Pearson, 2010, ISBN 978-0-273-71545-0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0011-03L | General Chemistry (Organic Chemistry) I ![]() ![]() | O | 3 credits | 2V + 1U | P. Chen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to Organic Chemistry. Classical structure theory, stereochemistry, chemical bonds and bonding, symmetry, nomenclature, organic thermochemistry, conformational analysis, basics of chemical reactions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to the structures of organic compounds as well as the structural and energetic basis of organic chemistry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction to the history of organic chemistry, introduction to nomenclature, learning of classical structures and stereochemistry: isomerism, Fischer projections, CIP rules, point groups, molecular symmetry and chirality, topicity, chemical bonding: Lewis bonding model and resonance theory in organic chemistry, description of linear and cyclic conjugated molecules, aromaticity, Huckel rules, organic thermochemistry, learning of organic chemistry reactions, intermolecular interactions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Unterlagen werden als PDF über die ILIAS-Plattform zur Verfügung gestellt | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | C. E. Housecroft & E. C. Constable: Chemistry, An Introduction to Organic, Inorganic and Physical Chemistry, 4th Edition, Prentice Hall / Pearson, 2010, ISBN 978-0-273-71545-0 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0011-01L | General Chemistry (Physical Chemistry) I | O | 3 credits | 2V + 1U | H. J. Wörner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture provides an introduction to some of the physical fundamentals of chemistry, in particular radioactivity, quantum mechanics, the structure of matter and an atom, the periodic table of elements, and chemical bonding. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | After the lecture, students will be able to, - to calculate physical quantities and their units which are important for chemistry, - name some properties of chemically relevant particles and propose experimental methods to determine these properties, - name applications and hazards of radioactivity, - categorize radioactive decay processes and mathematically represent the time course of simple decay reactions and qualitatively predict and represent them, - describe wave and particle properties of electromagnetic radiation and matter and propose experimental methods for their detection, - to explain the basics of quantum mechanics (meaning of the wave function, Heisenberg's uncertainty principle, operators, commutators) and to perform simple calculations with them, - analyze and calculate absorption and emission spectra of single-electron atoms, - to set up the Schrödinger equation for a molecular multi-particle system, - independently solve the Schrödinger equation for the model systems of particles in a box and harmonic oscillator in one dimension and generalize to higher dimensional non-interacting problems, - model molecular vibrations of diatomic molecules using the harmonic and anharmonic oscillator model, - explain the concept of an orbital and represent mathematically and pictorially the qualitative form of the orbitals of the hydrogen atom, - explain the structure of the periodic table of elements with the help of the orbital concept, - recognize and use similarities in the electronic structure of atoms to predict chemically relevant properties, and - establish term symbols for atomic ground states. Translated with www.DeepL.com/Translator (free version) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Atomic structure and structure of matter: atomic theory, elementary particles, atomic nuclei, radioactivity, nuclear reactions. Atomic orbitals and energy levels: ionisation energies, atomic spectroscopy, term values and symbols. Quantum mechanical atom model: wave-particle duality, the uncertainty principle, Schrödinger's equation, the hydrogen atom, construction of the periodic table of the elements. Chemical bonding: ionic bonding, covalent bonding, molecular orbitals. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | See homepage of the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | See homepage of the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Voraussetzungen: Maturastoff. Insbesondere Integral- und Differentialrechnung. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0125-00L | Fundamentals of Biology I: From Molecules to the Biochemistry of Cells | O | 6 credits | 5G | J. Vorholt-Zambelli, N. Ban, R. Glockshuber, K. Locher, J. Piel | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture provides an introduction to the basics of biochemistry and molecular biology as well as evolutionary principles. The focus is on bacteria and archaea under consideration of universal concepts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to biochemistry, molecular biology and evolutionary principles | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The lecture introduces biology as an interdisciplinary science. Links to physics and chemistry will manifest as biological processes that operate within the laws of thermodynamics and are rooted in elements, molecules and chemical reactions. The transition from geochemistry to biochemistry is discussed and considered in relation to the origin of life. Evolutionary principles are introduced and resulting processes are used as a guiding principle. Unifying concepts in biology are presented, including the structure and function of cellular macromolecules and the ways in which hereditary information is encoded, decoded and replicated. Central principles of universal energy conversion are looked at, starting from redox processes and focusing on bacteria and archaea. Finally, biological processes are put into an ecosystems perspective. The lecture is divided into different sections: 1. Geochemical perspectives on Earth and introduction to evolution 2. Building blocks of life 3. Macromolecules: Proteins 4. Membranes and transport across the plasma membrane 5. Universal mechanisms of inheritance, transcription and translation 6. Reaction Kinetics, binding equilibria and enzymatic catalysis 7. Essentials of Catabolism 8. Essentials of Anabolism 9. Metabolism and biogeochemical cycling of elements | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The newly conceived lecture is supported by scripts. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | The lecture is supported by scripts. The lecture contains elements of "Brock Biology of Microorganisms", Madigan et al. 15th edition, Pearson und "Biochemistry" (Stryer), Berg et al. 9th edition, Macmillan international. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-0271-00L | Mathematical Foundations I: Analysis A | O | 5 credits | 3V + 2U | L. Kobel-Keller | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to calculus in one dimension. Building simple models and analysing them mathematically. Functions of one variable: the notion of a function, of the derivative, the idea of a differential equation, complex numbers, Taylor polynomials and Taylor series. The integral of a function of one variable. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to calculus in one dimension. Building simple models and analysing them mathematically. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Functions of one variable: the notion of a function, of the derivative, the idea of a differential equation, complex numbers, Taylor polynomials and Taylor series. The integral of a function of one variable. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | G. B. Thomas, M. D. Weir, J. Hass: Analysis 1, Lehr- und Übungsbuch, Pearson-Verlag R. Sperb/M. Akveld: Analysis I (vdf) L. Papula: Mathematik für Ingenieure und Naturwissenschaftler (3 Bände), Vieweg further reading suggestions will be indicated during the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0121-00L | Inorganic Chemistry I | O | 3 credits | 2V + 1U | H. Grützmacher, P. Steinegger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Discussion of syntheses, structures, and general reactivity of coordination compounds of the transition metals (as well as the lanthanides and actinides). Introduction of methods of characterization and physicochemical properties of coordination compounds. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students will learn and understand the methodological basics of binding theory in complexes of transition metals. They will be able to explain the structure, chemical bonding, spectroscopic properties as well as general strategies for the synthesis of complexes of transition metals. In this context, students will master the basics of group theory and its application. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course consists of the following parts, which introduce the students to the chemistry of transition metals as well as lanthanides and actinides: 1) General definitions and terms in coordination chemistry; 2) Coordination numbers and structures; 3) Ligand types; 4) The chemical bond in coordination compounds part A: Crystal field theory and ligand field theory; 5) The chemical bond in coordination compounds part B: Qualitative MO theory; 6) Reactivity and reaction mechanisms of coordination compounds; 7) Group theory and character tables; 8) vibrational spectroscopy; 9) electronic excitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A (commented) collection of slides is available via Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | - J. E. Huheey, E. Keiter, R. Keiter: Anorganische Chemie, Prinzipien von Struktur und Reaktivität, De Gruyter, 5. Auflage, 2014 (ebook available at ETH Zurich). - N. Wiberg, Lehrbuch der Anorganischen Chemie, De Gruyter, 102. Auflage, 2008 (ebook available at ETH Zurich). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0221-00L | Organic Chemistry I | O | 3 credits | 2V + 1U | H. Wennemers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course will build upon the basic knowledge of structure and reactivity of organic molecules gained in AC/OCI and AC/OCII. The module aims to provide a wide understanding of the occurrence, synthesis, properties, and reactivity of carbonyl compounds. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The goal of this course is the acquisition of a basic repertoire of synthetic methods including important reactions of aldehydes, ketones, carboxylic acids, and carboxylic acid derivatives. Particular emphasis is placed on the understanding of reaction mechanisms and the correlation between structure and reactivity. A deeper understanding of the concepts presented during the lecture is reached by solving the problems handed out each time and discussed one week later in the exercise class. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Structure and properties of carbonyl compounds. Chemistry of aldehydes and ketones (hydrates, acetals, imines, enamines, nucleophilic addition of organometallic compounds). Synthesis and reactivity of carboxylic acid derivatives (nucleophilic addition-elimination reactions). Oxidations and reductions. Reactivity at the alpha-carbon (keto/enol tautomerization, alpha-functionalization, aldol reactions, conjugate addition reactions). Introduction to the concepts of protecting groups and retrosynthesis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The lecture slides, problem sets, and additional documents are provided online. Link: https://wennemers.ethz.ch/education.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Clayden, Greeves, and Warren. Organic Chemistry, 2nd Edition. Oxford University Press, 2012. Additional literature will be provided at the beginning of the class and in the lecture notes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0422-00L | Physical Chemistry II: Chemical Reaction Kinetics | O | 4 credits | 3V + 1U | R. Signorell | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to Chemical Reaction Kinetics. Fundamental concepts: rate laws, elementary reactions and composite reactions, molecularity, reaction order. Experimental methods in reaction kinetics. Simple chemical reaction rate theories. Reaction mechanisms and complex kinetic systems, chain reactions. Homogeneous catalysis and enzyme kinetics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to Chemical Reaction Kinetics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fundamental concepts: rate laws, elementary reactions and composite reactions, molecularity, reaction order. Experimental methods in reaction kinetics up to new developments in femtosecond kinetics. Simple chemical reaction rate theories: temperature dependence of the rate constant and Arrhenius equation, collision theory, reaction cross-section, transition state theory. Reaction mechanisms and complex kinetic systems, approximation techniques, chain reactions, explosions and detonations. Homogeneous catalysis and enzyme kinetics. Kinetics of charged particles. Diffusion and diffusion-controlled reactions. Photochemical kinetics. Heterogeneous reactions and heterogeneous catalysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Will be provided | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | - M. Quack und S. Jans-Bürli: Molekulare Thermodynamik und Kinetik, Teil 1, Chemische Reaktionskinetik, VdF, Zürich, 1986. - G. Wedler: Lehrbuch der Physikalischen Chemie, Verlag Chemie, Weinheim, 1982. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Voraussetzungen: - Mathematik I und II - Allgemeine Chemie I und II - Physikalische Chemie I | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0043-00L | Physics I | O | 4 credits | 3V + 1U | T. Esslinger | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to the concepts and tools in physics with the help of demonstration experiments: mechanics of point-like and ridged bodies, periodic motion and mechanical waves. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The concepts and tools in physics, as well as the methods of an experimental science are taught. The student should learn to identify, communicate and solve physical problems in his/her own field of science. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Mechanics (motion, Newton's laws, work and energy, conservation of momentum, rotation, gravitation, fluids) Periodic Motion and Waves (periodic motion, mechanical waves, acoustics). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The lecture follows the book "Physics" by Paul A. Tipler. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Paul A. Tipler and Gene P. Mosca, Physics (for Scientists and Engineers), W. H. Freeman and Company | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-0643-13L | Statistics II ![]() | O | 3 credits | 2V + 1U | J. Dambon | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Vertiefung von Statistikmethoden. Nach dem detailierten Fundament aus Statistik I liegt nun der Fokus auf konzeptueller Breite und konkreter Problemlösungsfähigkeit mit der Statistiksoftware R. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Nach diesem Kurs können Sie mit der Statistiksoftware R Daten einlesen, auf vielfältige Art verarbeiten und Grafiken für Berichte oder Vorträge exportieren. Sie verstehen die Konzepte von Methoden wie Lineare Regression (mit Faktoren, Interaktion, Modellwahl), ANOVA (1-weg, 2-weg), Chi-Quadrat-Test, Fisher-Test, GLMs, Mixed Models, Clustering, PCA und können diese mit der Statistiksoftware R in der Praxis umsetzen. Zudem kennen Sie die Grundprinzipien von gutem experimentellem Design und können bestehende Studien kritisch hinterfragen. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0051-00L | Analytical Chemistry I | O | 3 credits | 3G | D. Günther, M.‑O. Ebert, G. Schwarz, R. Zenobi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction into the most important spectroscopical methods and their applications to gain structural information. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowledge about the necessary theoretical background of spectroscopical methods and their practical applications | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Application oriented basics of organic and inorganic instrumental analysis and of the empirical employment of structure elucidation methods: Mass spectrometry: Ionization methods, mass separation, isotope signals, rules of fragmentation, rearrangements. NMR spectroscopy: Experimental basics, chemical shift, spin-spin coupling. IR spectroscopy: Revisiting topics like harmonic oscillator, normal vibrations, coupled oscillating systems (in accordance to the basics of the related lecture in physical chemistry); sample preparation, acquisition techniques, law of Lambert and Beer, interpretation of IR spectra; Raman spectroscopy. UV/VIS spectroscopy: Basics, interpretation of electron spectra. Circular dichroism (CD) und optical rotation dispersion (ORD). Atomic absorption, emission, and X-ray fluorescence spectroscopy: Basics, sample preparation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Script will be for the production price | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | - R. Kellner, J.-M. Mermet, M. Otto, H. M. Widmer (Eds.) Analytical Chemistry, Wiley-VCH, Weinheim, 1998; - D. A. Skoog und J. J. Leary, Instrumentelle Analytik, Springer, Heidelberg, 1996; - M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, 5. überarbeitete Auflage, Thieme, Stuttgart, 1995 - E. Pretsch, P. Bühlmann, C. Affolter, M. Badertscher, Spektroskopische Daten zur Strukturaufklärung organischer verbindungen, 4. Auflage, Springer, Berlin/Heidelberg, 2001- Kläntschi N., Lienemann P., Richner P., Vonmont H: Elementanalytik. Instrumenteller Nachweis und Bestimmung von Elementen und deren Verbindungen. Spektrum Analytik, 1996, Hardcover, 339 S., ISBN 3-86025-134-1. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Excercises are integrated in the lectures. In addition, attendance in the lecture 529-0289-00 "Instrumental analysis of organic compounts" (4th semester) is recommended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
535-0521-00L | Pharmacology and Toxicology I | O | 3 credits | 2V | U. Quitterer, J. Abd Alla | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This two-semester lecture course provides a detailed understanding of the fundamentals of drug action and the therapeutic use of important classes of drugs. The lectures are intended for students of pharmaceutical sciences. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The lectures provide a comprehensive survey of pharmacology and toxicology. Special emphasis is placed on the interrelationship between pharmacological, pathophysiological and clinical aspects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Topics include disease-relevant macroscopic, microscopic, pathobiochemical and functional disturbances of specific organs and organ systems. The lectures integrate disease pathology with mechanisms of drug action, usage, metabolism, pharmacokinetics, side effects, toxicology, contraindications and dosage of relevant drugs. Basic principles of clinical pharmacology and pharmacotherapy will be covered. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script is provided for each lecture. Scripts define important course contents but do not replace the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Recommended reading: Klaus Aktories, Veit Flockerzi, Ulrich Förstermann, Franz Hofmann. Allgemeine und spezielle Pharmakologie und Toxikologie. 13. Auflage (2022) Urban & Fischer (Elsevier) ISBN: 978-3-437-42622-3 The classic textbook in Pharmacology: Goodman and Gliman`s The Pharmacological Basis of Therapeutics Laurence Brunton, Bjorn Knollman. 14th edition (2022) ISBN-10: 1264258070 ISBN-13: 978-1264258079 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Voraussetzungen: Abschluss Grundstudium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0307-00L | Molecular and Structural Biology I: Protein Structure and Function D-BIOL students are obliged to take part I and part II (next semester) as a two-semester course | O | 3 credits | 2V | R. Glockshuber, K. Locher, E. Weber-Ban | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Biophysics of protein folding, membrane proteins and biophysics of membranes, enzymatic catalysis, catalytic RNA and RNAi, current topics in protein biophysics and structural biology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding of structure-function relationships in proteins and in protein folding, detailed understanding of biophysics and physical methods as well as modern methods for protein purification and microanalytics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Scripts on the individual topics can be found under http://www.mol.biol.ethz.ch/teaching. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Basics: - Creighton, T.E., Proteins, Freeman, (1993) - Fersht, A., Enzyme, Structure and Mechanism in Protein Science (1999), Freeman. - Berg, Tymoczko, Stryer: Biochemistry (5th edition), Freeman (2001). Current topics: References will be given during the lectures. . | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0731-00L | Nucleic Acids and Carbohydrates Note for BSc Biology students: Only one of the two concept courses 529-0731-00 Nucleic Acids and Carbohydrates (autumn semester) or 529-0732-00 Proteins and Lipids (spring semester) can be counted for the Bachelor's degree. | O | 6 credits | 3G | K. Lang, P. A. Kast, S. J. Sturla, H. Wennemers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | No script; illustrations from the original literature relevant to the individual lectures will be provided weekly (typically as handouts downloadable from the Moodle server). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Mainly based on original literature, a detailed list will be distributed during the lecture | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0018-00L | Organic Chemistry for Biochemistry and Chemical Biology | O | 6 credits | 3G | J. W. Bode | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The synthesis and reactivity of organic molecules plays a crucial role in chemical biology, particularly for the interrogation of biological pathways and phenomena. This course will cover advanced topics in the design and synthesis of organic molecules for applications in biochemistry and chemical biology, with particular emphasis on the mechanistic understanding of these reactions and processes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | After the completion of this lecture, the students will have an understanding of organic chemistry commonly employed in the field of chemical biology, be able to apply these concepts to the design and synthesis of tools for probing biological pathways, and explain the underlying reaction mechanisms of selective reactions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course will discuss past and recent advances in the synthesis of biomolecules, organic chemistry for applications in chemical biology, and the mechanism of relevant reactions. Topics will include chemical ligations, bioorthoganal reactions, photoaffinity probes, photopharmacology, activity based probes, targeted protein degraders, chemical probes for metabolites, fluorescent dyes and imaging, caged biomolecules, conditional activation, site-specific protein modification, and metabolic engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes and other material relevant for the course will be available online under https://bode.ethz.ch/education.html. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Relevant research articles and review papers will be available in the course and course material. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | This is an advanced organic chemistry course. Prior knowledge of organic synthesis, reactions, and mechanisms is required. Familiarity with biochemistry and biology is recommended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0124-00L | BCB I: General Chemistry Latest online enrolment is 18.09.2023. Information about the practical course will be given on the first day. | O | 6 credits | 8P | M. Bezdek, D. Dirin, A. Yakimov | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Qualitative analysis (cation and anion detection), acid-base equilibrium (pH, titrations, buffers), precipitation equilibrium (gravimetry, potentiometry, conductivity), redox reactions (synthesis, redox titrations, galvanic elements), metal complexes (synthesis, complexometric titration) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Qualitative analysis (simple cation and anion separation, detection of cations and anions), acid-base equilibrium (acid and base strength, pH and pKa values, titrations, buffers, Kjeldahl determination), precipitation equilibria (gravimetry, potentiometry, conductivity), oxidation numbers and redox behavior (synthesis), redox titrations, galvanic elements), metal complexes (synthesis of complexes, ligand exchange reactions, complexometric titration). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The practical course in general chemistry is intended to introduce students to scientific work and familiarize them with simple experimental work in the laboratory. The aim is to gain initial experience with the reaction behavior of substances. In addition to a series of quantitative experiments, qualitative experiments provide knowledge about the chemical properties of substances. The individual experiments are selected in such a way that the most varied possible overview of substance classes and phenomena of chemistry is obtained. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | https://moodle-app2.let.ethz.ch/course/view.php?id=20689 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | By enrolling in the laboratory course, students confirm to study all safety information thoroughly and to follow instructions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
529-0016-00L | BCB III: Organic Chemistry ![]() | O | 8 credits | 12P | J. W. Bode | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Laboratory course in Organic Chemistry for students of "Biochemisty - Chemical Biology" | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction into basic techniques used in the organic laboratory. Understanding organic reactions through experiments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Part I: Basic operations such as the isolation, purification, and characterization of organic compounds: distillation, extraction, chromatography, crystallization, IR (UV/1H-NMR)-spectroscopy for the identification of the constitution of organic compounds. Part II: Organic reactions: preparative chemistry. From simple, one-step to multi-step syntheses. The syntheses include classic Organic Chemistry as well as methods widely used in a Chemical Biology context. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | see https://bode.ethz.ch/education/bcb-iii/bcb-iii-lab-course.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | R. K. Müller, R. Keese: "Grundoperationen der präparativen organischen Chemie"; J. Leonard, B. Lygo, G. Procter: "Praxis der Organischen Chemie" (Übersetzung herausgegeben von G. Dyker), VCH, Weinheim, 1996, ISBN 3-527-29411-2 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basisprüfung + BCB I: General Chemistry By enrolling in the laboratory course, students confirm to study all safety information thoroughly and to follow instructions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() Registration for Block courses is mandatory. Please register under https://www.mybioportal.uzh.ch. Registration period: from 26.7.2023 - 13.8.2023 Please note the ETH admission criteria for the admission of ETH students to ETH block courses on the block course registration website under "allocation". | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() 19.09.2023 - 11.10.2023 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-1129-00L | Understanding and Engineering Microbial Metabolism ![]() Number of participants limited to 6. The enrolment is done by the D-BIOL study administration. | W | 6 credits | 7P | J. Vorholt-Zambelli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The focus of this laboratory course is on current research topics related to metabolic engineering and the general understanding of metabolism, particularly in relation to one carbon metabolism. Projects will be carried out in small teams. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The course aims at introducing technologies to investigate bacterial metabolism and key principles of metabolic engineering. The main focus of this block course is on practical work and will familiarize participants with complementary approaches, in particular genetic, biochemical and analytical techniques including metabolomics. Results will be presented by students in scientific presentations. Another goal is to learn how to write a scientific report. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course and will include topics such as pathway elucidation & engineering and related ongoing research projects in the lab. Experimental work applied during the course will comprise methods such as cloning work & transformation, growth determination, enzyme activity assays, liquid-chromatography mass-spectrometry and dynamic labeling experiments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | None | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Will be provided at the beginning of the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-1421-00L | The Mechanisms of Natural Transformation in Competent Gram-Negative Bacteria ![]() Number of participants limited to 5. The enrolment is done by the D-BIOL study administration. | W | 6 credits | 7P | M. Hospenthal | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students will carry out defined research projects related to the current research topics of the Hospenthal group. The topics will include protein expression of pilins and/or other competence proteins from Gram-negative bacteria, protein purification using affinity chromatography, crystallisation experiments and analysis of assembled pili by electron microscopy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The course should enable students to understand concepts of protein expression, purification and the characterisation of biomolecular interactions. In addition, students will learn some basic principles of X-ray crystallography and electron microscopy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The students will be tutored in their experimental work by an experienced doctoral student. The course will also include a short lecture delivered by M. Hospenthal, providing the theoretical background for the experimental work. Throughout the course, students will receive exercises that further help to explain the theory of the practical work, as well as literature research tasks. Participation in the following Hospenthal lab projects will be possible: • Purification, biophysical characterisation and structure determination of pilins • Purification, biophysical characterisation and structure determination of proteins and protein complexes involved in natural transformation. Experimental work on this project involves: • Cloning and mutagenesis • Recombinant or endogenous protein production in E. coli or Legionella • Protein purification by affinity chromatography (other chromatographic purification techniques will also be discussed) • Protein crystallisation and crystal optimisation • Visualisation of bacterial pili by electron microscopy (negative stain or cryo electron microscopy) • DNA binding experiments • Enzymatic activity measurements • In silico structural analyses using PyMOL and Chimera | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Any required reading of literature will be discussed at the beginning of the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | There are no special requirements for this course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() 12.10.2023 - 3.11.2023 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0345-00L | Mechanisms of Bacterial Pathogenesis ![]() Number of participants limited to 15. The enrolment is done by the D-BIOL study administration. | W | 6 credits | 7P | W.‑D. Hardt, B. Nguyen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Research laboratory class in small groups. Research projects on current topics in cellular microbiology and bacterial pathogenesis are assigned to each student. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to a current topic in cellular microbiology, molecular genetics of a bacterial pathogen or its interaction with the host's microbiome. Experimental work in the research lab and introduction to the current lab techniques. This includes contributions to the analysis of animal experiment. You will work with the current research literature in bacterial pathogenesis and write a research protocol. Requirement for obtaining the credit points: oral presentation of the research project, a short written exam and evaluation of the research protocol. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Research projects on the model pathogen Salmonella. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | none. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literature will be selected with reference to the assigned research project. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
|
Page 1 of 3
All