Search result: Catalogue data in Autumn Semester 2023
Physics Master ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() One Core Course in Experimental or Theoretical Physics from Physics Bachelor is eligible; however, this Core Course from Physics Bachelor cannot be used to compensate for the mandatory Core Course in Experimental or Theoretical Physics. For the category assignment keep the choice "no category" and take contact with the Study Administration (www.phys.ethz.ch/studies/study-administration.html) after having received the credits. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
402-0861-00L | Statistical Physics | W | 10 credits | 4V + 2U | G. M. Graf | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture covers the concepts of classical and quantum statistical physics. The discussion ranges from foundations to specific systems, including their formalisms and techniques, such as bosonic and fermionic gases, and magnetism. Phenomena, most notably phase transitions, are treated by methods such as exact solutions, mean-field approximations, and the renormalization group. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This lecture gives an introduction to the basic concepts and applications of statistical physics for general use in physics and, in particular, as preparation for theoretical solid-state physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Thermodynamics: Laws of thermodynamics, thermodynamic potentials, phenomenology of phase transitions of first and second order. Van der Waals gas-liquid transition. Classical statistical physics: micro-canonical-, canonical-, and grand canonical ensembles; the arrow of time, applications to interacting systems, and cumulant expansion. Quantum statistical physics: density matrix, ensembles, ideal quantum gases, fermions and bosons, second quantization, statistical interaction. Degenerate fermions: Fermi gas, electrons in magnetic field. Bosons: photons and phonons, Bose-Einstein condensation. Bogolyubov’s theory of superfluidity and liquid Helium. Magnetism: Ising-, XY-, Heisenberg models, exact solutions, mean-field theory, Peierls' argument on long-range order, Berezinskii-Kosterlitz-Thouless transition. Landau theory of phase transitions and symmetry. Critical phenomena: scaling theory, universality, and the renormalization group. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes available in English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | No specific book is used for the course. Relevant literature will be given in the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0843-00L | Quantum Field Theory I Special Students UZH must book the module PHY551 directly at UZH. | W | 10 credits | 4V + 2U | C. Anastasiou | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course discusses the quantisation of fields in order to introduce a coherent formalism for the combination of quantum mechanics and special relativity. Topics include: - Relativistic quantum mechanics - Quantisation of bosonic and fermionic fields - Interactions in perturbation theory - Scattering processes and decays - Elementary processes in QED - Radiative corrections | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The goal of this course is to provide a solid introduction to the formalism, the techniques, and important physical applications of quantum field theory. Furthermore it prepares students for the advanced course in quantum field theory (Quantum Field Theory II), and for work on research projects in theoretical physics, particle physics, and condensed-matter physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Will be provided as the course progresses | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0830-00L | General Relativity ![]() | W | 10 credits | 4V + 2U | L. Senatore | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations of the theory as well as the underlying physical principles and concepts. It covers selected applications, such as the Schwarzschild solution and gravitational waves. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Basic understanding of general relativity, its mathematical foundations (in particular the relevant aspects of differential geometry), and some of the phenomena it predicts (with a focus on black holes). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction to the theory of general relativity. The course puts a strong focus on the mathematical foundations, such as differentiable manifolds, the Riemannian and Lorentzian metric, connections, and curvature. It discusses the underlying physical principles, e.g., the equivalence principle, and concepts, such as curved spacetime and the energy-momentum tensor. The course covers some basic applications and special cases, including the Newtonian limit, post-Newtonian expansions, the Schwarzschild solution, light deflection, and gravitational waves. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Suggested textbooks: C. Misner, K, Thorne and J. Wheeler: Gravitation S. Carroll - Spacetime and Geometry: An Introduction to General Relativity R. Wald - General Relativity S. Weinberg - Gravitation and Cosmology | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0257-00L | Advanced Solid State Physics | W | 10 credits | 3V + 2U | W. Wegscheider | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course is an extension of the introductory course on solid state physics. The purpose of this course is to learn to navigate the complex collective quantum phases, excitations and phase transitions that are the dominant theme in modern solid state physics. The emphasis is on the main concepts and on specific experimental examples, both classic ones and those from recent research. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The goal is to study how novel phenomena emerge in the solid state. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Today's challenges and opportunities in Solid State Physics: Phase transitions and critical phenomena, Fermi surface instabilities, Superconductors, Magnetism of insulators, Semiconductors | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The printed material for this course involves: (1) a self-contained script, distributed electronically at semester start. (2) experimental examples (Power Point slide-style) selected from original publications, distributed at the start of every lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | A list of books will be distributed. Numerous references to useful published scientific papers will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | This course is for students who like to be engaged in active learning. The "exercise classes" are organized in a non-traditional way: following the idea of "less is more", we will work on only about half a dozen topics, and this gives students a chance to take a look at original literature (provided), and to get the grasp of a topic from a broader perspective. Students report back that this mode of "exercise class" is more satisfying than traditional modes, even if it does not mean less effort. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0442-00L | Quantum Optics | W | 10 credits | 3V + 2U | T. U. Donner | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course gives an introduction to the fundamental concepts of Quantum Optics and will highlight state-of-the-art developments in this rapidly evolving discipline. The topics covered include the quantum nature of light, semi-classical and quantum mechanical description of light-matter interaction, laser manipulation of atoms and ions, optomechanics and quantum computation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The course aims to provide the knowledge necessary for pursuing research in the field of Quantum Optics. Fundamental concepts and techniques of Quantum Optics will be linked to modern experimental research. During the course the students should acquire the capability to understand currently published research in the field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course gives an introduction to the fundamental concepts of Quantum Optics and will highlight state-of-the-art developments in this rapidly evolving discipline. The topics that are covered include: - coherence properties of light - quantum nature of light: statistics and non-classical states of light - light matter interaction: density matrix formalism and Bloch equations - quantum description of light matter interaction: the Jaynes-Cummings model, photon blockade - laser manipulation of atoms and ions: laser cooling and trapping, atom interferometry, - further topics: Rydberg atoms, optomechanics, quantum computing, complex quantum systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Selected book chapters will be distributed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Text-books: G. Grynberg, A. Aspect and C. Fabre, Introduction to Quantum Optics R. Loudon, The Quantum Theory of Light Atomic Physics, Christopher J. Foot Advances in Atomic Physics, Claude Cohen-Tannoudji and David Guéry-Odelin C. Cohen-Tannoudji et al., Atom-Photon-Interactions M. Scully and M.S. Zubairy, Quantum Optics Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0402-00L | Ultrafast Laser Physics ![]() | W | 10 credits | 3V + 2U | L. Gallmann, S. Johnson, U. Keller | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to ultrafast laser physics with an outlook into cutting edge research topics such as attosecond science and coherent ultrafast sources from THz to X-rays. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding of basic physics and technology for pursuing research in ultrafast laser science. How are ultrashort laser pulses generated, how do they interact with matter, how can we measure these shortest man-made events and how can we use them to time-resolve ultrafast processes in nature? Fundamental concepts and techniques will be linked to a selection of hot topics in current research and applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The lecture covers the following topics: a) Linear pulse propagation: mathematical description of pulses and their propagation in linear optical systems, effect of dispersion on ultrashort pulses, concepts of pulse carrier and envelope, time-bandwidth product b) Dispersion compensation: technologies for controlling dispersion, pulse shaping, measurement of dispersion c) Nonlinear pulse propagation: intensity-dependent refractive index (Kerr effect), self-phase modulation, nonlinear pulse compression, self-focusing, filamentation, nonlinear Schrödinger equation, solitons, non-instantaneous nonlinear effects (Raman/Brillouin), self-steepening, saturable gain and absorption d) Second-order nonlinearities with ultrashort pulses: phase-matching with short pulses and real beams, quasi-phase matching, second-harmonic and sum-frequency generation, parametric amplification and generation e) Relaxation oscillations: dynamical behavior of rate equations after perturbation f) Q-switching: active Q-switching and its theory based on rate equations, active Q-switching technologies, passive Q-switching and theory g) Active modelocking: introduction to modelocking, frequency comb versus axial modes, theory for various regimes of laser operation, Haus master equation formalism h) Passive modelocking: slow, fast and ideally fast saturable absorbers, semiconductor saturable absorber mirror (SESAM), designs of and materials for SESAMs, modelocking with slow absorber and dynamic gain saturation, modelocking with ideally fast saturable absorber, Kerr-lens modelocking, soliton modelocking, Q-switching instabilities in modelocked lasers, inverse saturable absorption i) Pulse duration measurements: rf cables and electronics, fast photodiodes, linear system theory for microwave test systems, intensity and interferometric autocorrelations and their limitations, frequency-resolved optical gating, spectral phase interferometry for direct electric-field reconstruction and more j) Noise: microwave spectrum analyzer as laser diagnostics, amplitude noise and timing jitter of ultrafast lasers, lock-in detection k) Ultrafast measurements: pump-probe scheme, transient absorption/differential transmission spectroscopy, four-wave mixing, optical gating and more l) Frequency combs and carrier-envelope offset phase: measurement and stabilization of carrier-envelope offset phase (CEP), time and frequency domain applications of CEP-stabilized sources m) High-harmonic generation and attosecond science: non-perturbative nonlinear optics / strong-field phenomena, high-harmonic generation (HHG), phase-matching in HHG, attosecond pulse generation, attosecond technology: detectors and diagnostics, attosecond metrology (streaking, RABBITT, transient absorption, attoclock), example experiments n) Ultrafast THz science: generation and detection, physics in THz domain, weak-field and strong-field applications o) Brief introduction to other hot topics: relativistic and ultra-high intensity ultrafast science, ultrafast electron sources, free-electron lasers, etc. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Class notes will be made available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Basic knowledge of quantum electronics (e. g., 402-0275-00L Quantenelektronik). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0891-00L | Phenomenology of Particle Physics I | W | 10 credits | 3V + 2U | P. Crivelli, A. de Cosa | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Topics to be covered in Phenomenology of Particle Physics I: Relativistic kinematics Decay rates and cross sections The Dirac equation From the S-matrix to the Feynman rules of QED Scattering processes in QED Experimental tests of QED Hadron spectroscopy Unitary symmetries and QCD QCD and alpha_s running QCD in e^+e^- annihilation Experimental tests of QCD in e^+e^- annihilation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction to modern particle physics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Topics to be covered in Phenomenology of Particle Physics I: Relativistic kinematics Decay rates and cross sections The Dirac equation From the S-matrix to the Feynman rules of QED Scattering processes in QED Experimental tests of QED Hadron spectroscopy Unitary symmetries and QCD QCD and alpha_s running QCD in e^+e^- annihilation Experimental tests of QCD in e^+e^- annihilation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | As described in the entity: Lernmaterialien | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0448-01L | Quantum Information Processing I: Concepts This theory part QIP I together with the experimental part 402-0448-02L QIP II (both offered in the autumn semester) combine to the core course in experimental physics "Quantum Information Processing" (totally 10 ECTS credits). This applies to the Master's degree programme in Physics. | W | 5 credits | 2V + 1U | J. Renes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course covers the key concepts and formalism of quantum information processing. Topics include quantum algorithms, quantum error correction, quantum cryptography, and quantum metrology, with an emphasis on the power of quantum information processing beyond that of classical information processing. The formalism of quantum states, measurements, and channels is developed in detail. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | By the end of the course students are able to explain the basic mathematical formalism of quantum mechanics and apply it to quantum information processing problems. They are able to adapt and apply these concepts and methods to analyze and discuss quantum algorithms and other quantum information-processing protocols. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The topics covered in the course will include quantum circuits, gate decomposition and universal sets of gates, efficiency of quantum circuits, quantum algorithms (Shor, Grover, Deutsch-Josza,..), stabilizer-based quantum error correction, fault-tolerant designs, the BB84 quantum key distribution protocol, and simple methods of quantum metrology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Quantum Computation and Quantum Information Michael Nielsen and Isaac Chuang Cambridge University Press | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | A good understanding of finite dimensional linear algebra is recommended. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
402-0448-02L | Quantum Information Processing II: Implementations This experimental part QIP II together with the theory part 402-0448-01L QIP I (both offered in the autumn semester) combine to the core course in experimental physics "Quantum Information Processing" (totally 10 ECTS credits). This applies to the Master's degree programme in Physics. | W | 5 credits | 2V + 1U | A. Wallraff, J.‑C. Besse | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to experimental systems for quantum information processing (QIP). Quantum bits. Coherent Control. Measurement. Decoherence. Microscopic and macroscopic quantum systems. Nuclear magnetic resonance (NMR). Photons. Ions and neutral atoms in electromagnetic traps. Charges and spins in quantum dots and NV centers. Charges and flux quanta in superconducting circuits. Novel hybrid systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Throughout the past 20 years the realm of quantum physics has entered the domain of information technology in more and more prominent ways. Enormous progress in the physical sciences and in engineering and technology has allowed us to build novel types of information processors based on the concepts of quantum physics. In these processors information is stored in the quantum state of physical systems forming quantum bits (qubits). The interaction between qubits is controlled and the resulting states are read out on the level of single quanta in order to process information. Realizing such challenging tasks is believed to allow constructing an information processor much more powerful than a classical computer. This task is taken on by academic labs, startups and major industry. The aim of this class is to give a thorough introduction to physical implementations pursued in current research for realizing quantum information processors. The field of quantum information science is one of the fastest growing and most active domains of research in modern physics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction to experimental systems for quantum information processing (QIP). - Quantum bits - Coherent Control - Measurement - Decoherence QIP with - Ions - Superconducting Circuits - Photons - NMR - Rydberg atoms - NV-centers - Quantum dots | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Course material be made available at www.qudev.ethz.ch and on the Moodle platform for the course. More details to follow. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Quantum Computation and Quantum Information Michael Nielsen and Isaac Chuang Cambridge University Press | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The class will be taught in English language. Basic knowledge of concepts of quantum physics and quantum systems, e.g from courses such as Phyiscs III, Quantum Mechanics I and II or courses on topics such as atomic physics, solid state physics, quantum electronics are considered helpful. More information on this class can be found on the web site www.qudev.ethz.ch |
Page 1 of 1