Search result: Catalogue data in Autumn Semester 2023
Mechanical Engineering Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Core Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Energy, Flows and Processes The courses listed in this category “Core Courses” are recommended. Alternative courses can be chosen in agreement with the tutor. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0105-00L | Imaging in Fluid Dynamics | W | 4 credits | 3G | F. Coletti | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This is a laboratory-based course on imaging techniques for the measurement of fluid flow properties. Modern approaches are presented, including particle image velocimetry and particle tracking velocimetry, applied in various experimental facilities. Students obtain first-hand experience with such techniques in laboratory sessions, using high-speed/high-resolution cameras in wind/water tunnels. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowledge of the working principles of modern flow imaging and velocimetry Understanding of hardware and software requirements to achieve desired spatio-temporal resolution. Ability to carry out imaging experiments in actual laboratory flows, and interpreting meaningfully the results. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Basics of optical diagnostics. Conception of laboratory flow experiment to be characterized by imaging, with focus on the spatial and temporal scales at play. Laboratory experiments including: - characterization of vortex shedding by wake visualization and liquid crystal thermography. - Eulerian flow field in turbulent flow by particle image velocimetry - Lagrangian flow field in turbulent flow by particle tracking velocimetry - fluid-structure interaction in wind tunnel by high-speed imaging. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts will be made available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Fluid Dynamics, basic programming skills. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0109-00L | Turbulent Flows | W | 4 credits | 2V + 1U | P. Jenny | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Contents - Laminar and turbulent flows, instability and origin of turbulence - Statistical description: averaging, turbulent energy, dissipation, closure problem - Scalings. Homogeneous isotropic turbulence, correlations, Fourier representation, energy spectrum - Free turbulence: wake, jet, mixing layer - Wall turbulence: Channel and boundary layer - Computation and modelling of turbulent flows | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Basic physical phenomena of turbulent flows, quantitative and statistical description, basic and averaged equations, principles of turbulent flow computation and elements of turbulence modelling | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Properties of laminar, transitional and turbulent flows. - Origin and control of turbulence. Instability and transition. - Statistical description, averaging, equations for mean and fluctuating quantities, closure problem. - Scalings, homogeneous isotropic turbulence, energy spectrum. - Turbulent free shear flows. Jet, wake, mixing layer. - Wall-bounded turbulent flows. - Turbulent flow computation and modeling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes are available | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | S.B. Pope, Turbulent Flows, Cambridge University Press, 2000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0125-00L | Hydrodynamics and Cavitation Does not take place this semester. | W | 4 credits | 3G | O. Supponen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course builds on the foundations of fluid dynamics to describe hydrodynamic flows and provides an introduction to cavitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The main learning objectives of this course are: 1. Identify and describe dominant effects in liquid fluid flows through physical modelling. 2. Identify hydrodynamic instabilities and discuss the stability region 3. Describe fragmentation of liquids 4. Explain tension, nucleation and phase-change in liquids. 5. Describe hydrodynamic cavitation and its consequences in physical terms. 6. Recognise experimental techniques and industrial and medical applications for cavitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course gives an overview on the following topics: hydrostatics, capillarity, hydrodynamic instabilities, fragmentation. Tension in liquids, phase change. Cavitation: single bubbles (nucleation, dynamics, collapse), cavitating flows (attached, cloud, vortex cavitation). Industrial applications and measurement techniques. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Class notes and handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literature will be provided in the course material. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Fluid dynamics I & II or equivalent | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0163-00L | Nuclear Energy Conversion | W | 4 credits | 2V + 1U | A. Manera | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Phyiscal fundamentals of the fission reaction and the sustainable chain reaction, thermal design, construction, function and operation of nuclear reactors and power plants, light water reactors and other reactor types, converion and breeding | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students get an overview on energy conversion in nuclear power plants, on construction and function of the most important types of nuclear reactors with special emphasis to light water reactors. They obtain the mathematical/physical basis for quantitative assessments concerning most relevant aspects of design, dynamic behaviour as well as material and energy flows. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Nuclear physics of fission and chain reaction. Themodynamics of nuclear reactors. Design of the rector core. Introduction into the dynamic behaviour of nuclear reactors. Overview on types of nuclear reactors, difference between thermal reactors and fast breaders. Construction and operation of nuclear power plants with pressurized and boiling water reactors, role and function of the most important safety systems, special features of the energy conversion. Development tendencies of rector technology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Hand-outs will be distributed. Additional literature and information on the website of the lab: Link | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | S. Glasston & A. Sesonke: Nuclear Reactor Engineering, Reactor System Engineering, Ed. 4, Vol. 2., Springer-Science+Business Media, B.V. R. L. Murray: Nuclear Energy (Sixth Edition), An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, Elsevier | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0204-00L | Aerospace Propulsion | W | 4 credits | 2V + 1U | R. S. Abhari, V. Iranidokht | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | In this course, an introduction of working principals of aero-engines and the related background in aero- and thermodynamics is presented. System as well as component engineering aspects of engine design are examined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction of working principals of aero-engines and the related background in aero- and thermodynamics. Engineering aspects of engine design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course focuses on the fundamental concepts as well as the applied technologies for aerospace application, with a primary focus related to aviation. The systematic evolution of the aircraft propulsion engines, from turbojet to the modern high bypass ratio turbofan, including the operational limitations, are examined. Following the system analysis, the aerodynamic design of each component, including the inlet, fan, compressor, combustors, turbines and exhaust nozzles are presented. The mechanical and material limitations of the modern designed are also discussed. The environmental aspects of propulsion (noise and emissions) are also presented. In the last part of the course, a basic introduction to the fundamentals of space propulsion is also presented. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes will be distributed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | This course requires prior background in mechanical or aerospace engineering. Students must have already completed courses in basics of Thermodynamics (including cycles) as well as compressible Fluid Dynamics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0209-00L | Renewable Energy Technologies | W | 4 credits | 3G | A. Bardow | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Renewable energy technologies: solar PV, solar thermal, biomass, wind, geothermal, hydro, waste-to-energy. Focus is on the engineering aspects. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students learn the potential and limitations of renewable energy technologies and their contribution towards sustainable energy utilization. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture Notes containing copies of the presented slides. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisite: strong background on the fundamentals of engineering thermodynamics, equivalent to the material taught in the courses Thermodynamics I, II, and III of D-MAVT. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0213-00L | Fluid Dynamics with the Lattice Boltzmann Method Does not take place this semester. | W | 4 credits | 3G | I. Karlin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course provides an introduction to theoretical foundations and practical usage of the Lattice Boltzmann Method for fluid dynamics simulations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Methods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations. During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on. Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course). The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others. Optionally, we offer an opportunity to complete a project of student's choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course builds upon three parts: I Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples. II Theoretical basis of statistical mechanics and kinetic equations. III Lattice Boltzmann method for real-world applications. The content of the course includes: 1. Background: Elements of statistical mechanics and kinetic theory: Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory: Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation; Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids. 2. Basics of the Lattice Boltzmann Method and Simulations: Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures. 3. Hands on: Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc). 4. Practical issues of LBM for fluid dynamics simulations: Lattice Boltzmann simulations of turbulent flows; numerical stability and accuracy. 5. Microflow: Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations. 6. Advanced lattice Boltzmann methods: Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries. 7. Introduction to LB models beyond hydrodynamics: Relativistic fluid dynamics; flows with phase transitions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes on the theoretical parts of the course will be made available. Selected original and review papers are provided for some of the lectures on advanced topics. Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0215-00L | Fundamentals of Acoustics | W | 4 credits | 3G | N. Noiray, B. Van Damme | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course provides an introduction to acoustics. It focusses on fundamental phenomena of airborne and structure-borne sound waves. The lecture combines theoretical principles with practical insights and interpretations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course is proposed for Master and PhD students interested in getting knowledge in acoustics. Students will be able to understand, describe analytically and interpret sound generation, absorption and propagation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | First, magnitudes characterizing sound propagation are reviewed and the constitutive equations for acoustics are derived. Then the different types of sources (monopole/dipole/quadrupole, punctual, non-compact) are introduced and linked to the noise generated by turbulent flows, coherent vortical structures or fluctuating heat release. The scattering of sound by rigid bodies is given in basic configurations. Analytical, experimental and numerical methods used to analyze sound in ducts and rooms are presented (Green functions, Galerkin expansions, Helmholtz solvers). The second part covers elastic wave phenomena, such as dispersion and vibration modes, in infinite and finite structures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts will be distributed during the class | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Books will be recommended for each chapter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0216-00L | Wind Energy | W | 4 credits | 2V + 1U | N. Chokani | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy. These subjects are introduced through a discussion of the basic principles of wind energy generation and conversion, and a detailed description of the broad range of relevant technical, economic and environmental topics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This mechanical engineering course focuses on the technical aspects of wind turbines; non-technical issues are not within the scope of this technically oriented course. On completion of this course, the student shall be able to conduct the preliminary aerodynamic and structural design of the wind turbine blades. The student shall also be more aware of the broad context of drivetrains, dynamics and control, electrical systems, and meteorology, relevant to all types of wind turbines. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0221-00L | Introduction to Modeling and Optimization of Sustainable Energy Systems | W | 4 credits | 4G | G. Sansavini, F. J. Baader, A. Bardow, S. Moret | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course introduces the fundamentals of energy system modeling for the analysis and the optimization of the energy system design and operations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | At the end of this course, students will be able to: - define and quantify the key performance indicators of sustainable energy systems; - select and apply appropriate models for conversion, storage and transport of energy; - develop mathematical models for the analysis, design and operations of multi-energy systems and solve them with appropriate mathematical tools; - select and apply methodologies for the uncertainty analysis on energy systems models; - apply the acquired knowledge to tackle the challenges of the energy transition. In the course "Introduction to Modeling and Optimization of Sustainable Energy Systems", the competencies of process understanding, system understanding, modeling, concept development, data analysis & interpretation and measurement methods are taught, applied and examined. Programming is applied. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The global energy transition; Key performance indicators of sustainable energy systems; Optimization models; Heat integration and heat exchanger networks; Life-cycle assessment; Models for conversion, storage and transport technologies; Multi-energy systems; Design, operations and analysis of energy systems; Uncertainties in energy system modeling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture slides and supplementary documentation will be available online. Reference to appropriate book chapters and scientific papers will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0225-00L | Material Characterization by X-ray Techniques: Diffraction, Absorption, Total Scattering | W | 4 credits | 3G | P. M. Abdala | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The determination of structure–property relationships in functional materials relies critically on structural characterization methods. This course introduces the basics of X-ray powder diffraction, pair distribution function (PDF) of X-ray total scattering and X-ray absorption spectroscopy analyses to determine the structure of inorganic functional materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction basics of the structural characterization of materials using X-rays: covering the local and average structures. specifically: X-ray , -powder diffraction -total scattering and -absorption spectroscopy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course outlines experimental techniques based on X-rays to investigate the atomic structure of materials covering the local- mid- and long-range order. It covers: 1- Review of fundamentals of materials science and the structure of solids. 2- Overview of the different characterization methods to investigate the structure of functional materials, spanning the local to long-range order structure. 3- X-ray powder diffraction. 4- X-ray total scattering and pair distribution function analysis. 5- X-ray absorption spectroscopy. 6- Practical sessions on X-ray powder diffraction and PDF experiments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literature will be given during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0227-00L | Basics of Air Transport (Aviation I) | W | 4 credits | 3G | P. Wild | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | In general the course explains the main principles of air transport and elaborates on simple interdisciplinary topics. Working on broad 14 different topics like aerodynamics, manufacturers, airport operations, business aviation, business models etc. the students get a good overview in air transportation. The program is taught in English and we provide 11 different experts/lecturers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The goal is to understand and explain basics, principles and contexts of the broader air transport industry. Further, we provide the tools for starting a career in the air transport industry. The knowledge may also be used for other modes of transport. Ideal foundation for Aviation II - Management of Air Transport. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Weekly: 1h independent preparation; 2h lectures and 1 h training with an expert in the respective field Concept: This course will be tought as Aviation I. A subsequent course - Aviation II - covers the "Management of Air Transport". Content: Transport as part of the overall transportation scheme; Aerodynamics; Aircraft (A/C) Designs & Structures; A/C Operations; Aviation Law; Maintenance & Manufacturers; Airport Operations & Planning; Aviation Security; ATC & Airspace; Air Freight; General Aviation; Business Jet Operations; Business models within Airline Industry; Military Aviation. Technical visit: This course includes a guided tour at Zurich Airport and Dubendorf Airfield (baggage sorting system, apron, Tower & Radar Simulator at Skyguide Dubendorf). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Preparation materials & slides are provided prior to each class | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literature will be provided by the lecturers, respectively there will be additional Information upon registration (normally available in Moodle) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The lecture is planned as class teaching. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0245-00L | Energy Systems Analysis: an Introduction and Overview with Applications | W | 4 credits | 2V + 2U | R. McKenna | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This lecture is an introductory (advanced Bachelor or beginner Master level) course on Energy Systems Analysis. It provides students with an overview of the field and an understanding of relevant tools and methods, along with their strengths and weaknesses. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | - Analyse energy technologies with respect to different criteria/characteristics - Discuss and debate the pros and cons of different ESA models/approaches (for specific applications) - Explain the system-level interdependencies/interconnections within the energy system - Evaluate the effect of uncertainties and “the human dimension” on ESA and scenarios | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course provides an introduction and overview to the most well-established models and methods of energy systems analysis, in each case introducing students to the theory and assumptions of the method, strengths and weaknesses of the specific approach, and case studies for exemplary energy technologies and systems. The students are taught to understand and will be able to apply the basic principles of these methods in the context of targeted assignments relating to real-world energy systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | No but slides are provided before the lectures and videos recorded. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Will be provided during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | No specific prerequisities, some background in energy-related topics in the Bachelor would be beneficial. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0251-00L | Principles, Efficiency Optimization and Future Applications of IC Engines | W | 4 credits | 2V + 1U | Y. Wright, P. Soltic | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Future Relevance of IC engines for transportation and Power-on-Demand. Characteristic performance parameters, operating maps and duty cycles. Thermodynamic cycles and energetic optimization. In-cylinder flows, convective and radiative heat transfer, combustion modes, boosting and simulation methods. Hybrid powertrains, decentralized power/heat cogeneration and use of renewable/e-fuels. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students get familiar with operating characteristics and efficiency maximization methods of IC engines for propulsion and decentralized electricity (and heat) generation. To this end, they learn about simulation methods and related experimental techniques for performance assessment in a combination of lectures and exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This lecture aims at introducing the students to the working principles and efficiency optimization methods for Internal Combustion (IC) engines which are expected to continue to play a very important role in transportation (long-haul heavy duty, marine) and decentralized combined heat and power generation. Following an overview of different applications and powertrains, the course will focus on the following topics: First, a generic overview of the history of IC-Engines is given, and the basic dimensions and specific engine-relevant terminology are introduced. Next, operating maps for different duty cycles are discussed, highlighting the benefits of individual powertrain configurations for different usage scenarios. The high-pressure thermodynamic process and combustion-induced heat release are analyzed in detail and the design of the combustion processes is discussed in view of further optimization of the energy conversion efficiency. The concept of boosting, its challenges and potential are also presented. In addition, flow field characteristics, convective and radiative heat transfer and combustion modes (Otto, Diesel and “multi-mode” cycles) will be discussed along with possible simulation methods. The course consists of lectures combined with exercises. In addition, several invited guest talks will be held by representatives from Swiss industrial companies active in this field. Provided the pandemic measures allow, visits to different engine test facilities are further envisioned. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | J. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | This course provides background for the course 151-0254-00L “Environmental Aspects of Future Mobility” held in the Spring Semester, where the focus is on emission formation and minimization, exhaust gas after treatment systems and potentials of future synthetic/e-fuels in IC engines; all given in the broader context of a future mobility/transportation options (battery electric, hybrids, fuel cells etc.) and transformation pathways towards sustainability. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0368-00L | Aeroelasticity | W | 4 credits | 2V + 1U | M. Righi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to the basics and into the methods of Aeroelasticity. An overview of the main static and dynamic phenomena arising from the interaction between structural and aerodynamic loads. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The course will provide a basic physical understanding of flow-structure interaction focused on lifting bodies such as wings. You will get to know the most important phenomena in the static and dynamic aeroelasticity, as well as a presentation of the most relevant analytical and numerical prediction methods. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction to steady and unsteady thin airfoil theory, extension to three dimension wing aerodynamics, strip theory, overview of numerical methods available (panel methods, CFD). Introduction to unsteady aerodynamics (theory): Theodorsen and Wagner functions. Unsteady aerodynamics observed from numerical experiments (CFD). Generation of simplified mathematical models. Presentation of steady aeroelasticity: equations of equilibrium for the typical section, aeroelastic deformation, effectiveness of the aeroelastic system, stability (definition), divergence condition, role played by a control surface, control effectiveness, sweep angle, aeroelastic tailoring of bending-torsion coupling. Ritz model to model beams, use of FEM, modal condensation, choice of generalized coordinates. Presentation of dynamic aeroelasticity: assessment of dynamic aeroelastic response of simple systems. Flutter kinematics (bending-twisting). Dynamic response of a simplified wing. Numerical aeroelasticity (Test Cases extracted from the latest AIAA Aeroelastic Prediction Workshops). Generation of Reduced Order Models from CFD data (in some cases though Machine Learning). Aeroelasticity of modern aircraft: assessment of the effects induced by the control surfaces and control systems (Aeroservoelasticity), active controlled aircraft, flutter-suppression systems, certification (EASA, FAA). Planning and execution of Wind Tunnel experiments with aeroelastic models. Live-execution of an experiment in the WT of the ETH. Brief presentation of phenomena like Limit-Cycle Oscillations (LCO) and panel flutter. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script in English language is available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Bispilnghoff Ashley, Aeroelasticity Abbott, Theory of Wing sections, Y. C. Fung, An Introduction to the Theory of Aeroelasticity, Dover Phoenix Editions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0709-00L | Stochastic Methods for Engineers and Natural Scientists | W | 4 credits | 4G | D. W. Meyer-Massetti | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course provides an introduction into stochastic methods that are applicable for example for the description and modeling of turbulent and subsurface flows. Moreover, mathematical techniques are presented that are used to quantify uncertainty in various engineering applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | By the end of the course you should be able to mathematically describe random quantities and their effect on physical systems. Moreover, you should be able to develop basic stochastic models of such systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Probability theory, single and multiple random variables, mappings of random variables - Estimation of statistical moments and probability densities based on data - Stochastic differential equations, Ito calculus, PDF evolution equations - Monte Carlo integration with importance and stratified sampling - Markov-chain Monte Carlo sampling - Control-variate and multi-level Monte Carlo estimation - Statistical tests for means and goodness-of-fit All topics are illustrated with engineering applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Detailed lecture notes will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Some textbooks related to the material covered in the course: Stochastic Methods: A Handbook for the Natural and Social Sciences, Crispin Gardiner, Springer, 2010 The Fokker-Planck Equation: Methods of Solutions and Applications, Hannes Risken, Springer, 1996 Turbulent Flows, S.B. Pope, Cambridge University Press, 2000 Spectral Methods for Uncertainty Quantification, O.P. Le Maitre and O.M. Knio, Springer, 2010 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0851-00L | Robot Dynamics | W | 4 credits | 2V + 2U | M. Hutter, R. Siegwart, J. Tordesillas Torres | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | We will provide an overview on how to kinematically and dynamically model typical robotic systems such as robot arms, legged robots, rotary wing systems, or fixed wing. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The primary objective of this course is that the student deepens an applied understanding of how to model the most common robotic systems. The student receives a solid background in kinematics, dynamics, and rotations of multi-body systems. On the basis of state of the art applications, he/she will learn all necessary tools to work in the field of design or control of robotic systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course consists of three parts: First, we will refresh and deepen the student's knowledge in kinematics, dynamics, and rotations of multi-body systems. In this context, the learning material will build upon the courses for mechanics and dynamics available at ETH, with the particular focus on their application to robotic systems. The goal is to foster the conceptual understanding of similarities and differences among the various types of robots. In the second part, we will apply the learned material to classical robotic arms as well as legged systems and discuss kinematic constraints and interaction forces. In the third part, focus is put on modeling fixed wing aircraft, along with related design and control concepts. In this context, we also touch aerodynamics and flight mechanics to an extent typically required in robotics. The last part finally covers different helicopter types, with a focus on quadrotors and the coaxial configuration which we see today in many UAV applications. Case studies on all main topics provide the link to real applications and to the state of the art in robotics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The contents of the following ETH Bachelor lectures or equivalent are assumed to be known: Mechanics and Dynamics, Control, Basics in Fluid Dynamics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0917-00L | Mass Transfer | W | 4 credits | 2V + 2U | S. E. Pratsinis, A. Güntner, V. Mavrantzas, C.‑J. Shih | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course presents the fundamentals of transport phenomena with emphasis on mass transfer. The physical significance of basic principles is elucidated and quantitatively described. Furthermore the application of these principles to important engineering problems is demonstrated. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fick's laws; application and significance of mass transfer; comparison of Fick's laws with Newton's and Fourier's laws; derivation of Fick's 2nd law; diffusion in dilute and concentrated solutions; rotating disk; dispersion; diffusion coefficients, viscosity and heat conduction (Pr and Sc numbers); Brownian motion; Stokes-Einstein equation; mass transfer coefficients (Nu and Sh numbers); mass transfer across interfaces; Analogies for mass-, heat-, and momentum transfer in turbulent flows; film-, penetration-, and surface renewal theories; simultaneous mass, heat and momentum transfer (boundary layers); homogeneous and heterogeneous reversible and irreversible reactions; diffusion-controlled reactions; mass transfer and first order heterogeneous reaction. Applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Cussler, E.L.: "Diffusion", 3nd edition, Cambridge University Press, 2009. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Students attending this highly-demanding course are expected to allocate sufficient time within their weekly schedule to successfully conduct the exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0927-00L | Rate-Controlled Separations in Fine Chemistry | W | 6 credits | 3V + 1U | M. Mazzotti, V. Becattini | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life science processes in particular, fine chemistry and biotechnology, and in energy-related applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students are supposed to obtain detailed insight into the fundamentals of separation processes that are frequently applied in modern life sicence processes in particular, fine chemistry and biotechnology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The class covers separation techniques that are central in the purification and downstream processing of chemicals and bio-pharmaceuticals. Examples from both areas illustrate the utility of the methods: 1) Adsorption and chromatography; 2) Membrane processes; 3) Crystallization and precipitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts during the class | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Recommendations for text books will be covered in the class | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Requirements (recommended, not mandatory): Thermal separation Processes I (151-0926-00) and Modelling and mathematical methods in process and chemical engineering (151-0940-00) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0951-00L | Process Design and Safety | W | 4 credits | 2V + 1U | F. Trachsel, C. Hutter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture Process Design and Saftey deals with the fundamentals of project management, scale-up, dimensioning and safety of chemical process equipment and plants. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The objective of the lecture is to expound the engineering design approach of important elements in chemical plant design. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fundamentals in Chemical engineering Design; Project Management, Cost estimate, Materials and Corrosion, Piping and Armatures, Pumps, Reactors and Scale-up, Safety of chemical processes, Patents | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The lecture slides will be distributed. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Coulson and Richardson's: Chemical Engineering , Vol 6: Chemical Engineering Design, (1996) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | A 1-day excursion including a visit of a chemical plant will be part of the lecture. |
- Page 1 of 2 All