Search result: Catalogue data in Autumn Semester 2023
Biology Master ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() | |||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() ![]() ![]() See D-BIOL Master Studies Guide | |||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
551-0307-00L | Molecular and Structural Biology I: Protein Structure and Function D-BIOL students are obliged to take part I and part II (next semester) as a two-semester course | W | 3 credits | 2V | R. Glockshuber, K. Locher, E. Weber-Ban | ||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Biophysics of protein folding, membrane proteins and biophysics of membranes, enzymatic catalysis, catalytic RNA and RNAi, current topics in protein biophysics and structural biology. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding of structure-function relationships in proteins and in protein folding, detailed understanding of biophysics and physical methods as well as modern methods for protein purification and microanalytics. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Scripts on the individual topics can be found under http://www.mol.biol.ethz.ch/teaching. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Basics: - Creighton, T.E., Proteins, Freeman, (1993) - Fersht, A., Enzyme, Structure and Mechanism in Protein Science (1999), Freeman. - Berg, Tymoczko, Stryer: Biochemistry (5th edition), Freeman (2001). Current topics: References will be given during the lectures. . | ||||||||||||||||||||||||||||||||||||||||||||||||||
551-0309-00L | Concepts in Modern Genetics Information for UZH students: Enrolment to this course unit only possible at ETH. No enrolment to module BIO348 at UZH. Please mind the ETH enrolment deadlines for UZH students: Link | W | 6 credits | 4V | Y. Barral, D. Bopp, A. Hajnal, O. Voinnet | ||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Concepts of modern genetics and genomics, including principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course focuses on the concepts of classical and modern genetics and genomics. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The topics include principles of classical genetics; yeast genetics; gene mapping; forward and reverse genetics; structure and function of eukaryotic chromosomes; molecular mechanisms and regulation of transcription, replication, DNA-repair and recombination; analysis of developmental processes; epigenetics and RNA interference. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Scripts and additional material will be provided during the semester. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||
551-0313-00L | Microbiology (Part I) | W | 3 credits | 2V | W.‑D. Hardt, L. Eberl, B. Nguyen, J. Piel, M. Pilhofer, A. Vagstad | ||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Advanced lecture class providing a broad overview on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This concept class will be based on common concepts and introduce to the enormous diversity among bacteria and archaea. It will cover the current research on bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Advanced class covering the state of the research in bacterial cell structure, genetics, metabolism, symbiosis and pathogenesis. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Updated handouts will be provided during the class. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Current literature references will be provided during the lectures. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | English The lecture "Grundlagen der Biologie II: Mikrobiologie" is the basis for this advanced lecture. | ||||||||||||||||||||||||||||||||||||||||||||||||||
551-0319-00L | Cellular Biochemistry (Part I) | W | 3 credits | 2V | U. Kutay, F. Allain, T. Kleele, I. Zemp | ||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Concepts and molecular mechanisms underlying the biochemistry of the cell, providing advanced insights into structure, function and regulation of individual cell components. Particular emphasis will be put on the spatial and temporal integration of different molecules and signaling pathways into global cellular processes such as intracellular transport, cell division & growth, and cell migration. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The full-year course (551-0319-00 & 551-0320-00) focuses on the molecular mechanisms and concepts underlying the biochemistry of cellular physiology, investigating how these processes are integrated to carry out highly coordinated cellular functions. The molecular characterisation of complex cellular functions requires a combination of approaches such as biochemistry, but also cell biology and genetics. This course is therefore the occasion to discuss these techniques and their integration in modern cellular biochemistry. The students will be able to describe the structural and functional details of individual cell components, and the spatial and temporal regulation of their interactions. In particular, they will learn to explain the integration of different molecules and signaling pathways into complex and highly dynamic cellular processes such as intracellular transport, cytoskeletal rearrangements, cell motility, cell division and cell growth. In addition, they will be able to illustrate the relevance of particular signaling pathways for cellular pathologies such as cancer. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Structural and functional details of individual cell components, regulation of their interactions, and various aspects of the regulation and compartmentalisation of biochemical processes. Topics include: biophysical and electrical properties of membranes; viral membranes; structural and functional insights into intracellular transport and targeting; vesicular trafficking and phagocytosis; post-transcriptional regulation of gene expression. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Scripts and additional material will be provided during the semester. Please contact Dr. Alicia Smith for assistance with the learning materials. (alicia.smith@bc.biol.ethz.ch) | ||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Recommended supplementary literature (review articles and selected primary literature) will be provided during the course. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | To attend this course the students must have a solid basic knowledge in chemistry, biochemistry and general biology. The course will be taught in English. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||
701-2413-00L | Evolutionary Genetics | W | 6 credits | 4V | T. Städler, A. Widmer, S. Fior, M. Fischer, J. Stapley | ||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The concept course 'Evolutionary Genetics' consists of two lectures that jointly provide an introduction to the fields of population and quantitative genetics (emphasis on basic concepts) and ecological genetics (more emphasis on evolutionary and ecological processes of adaptation and speciation). | ||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The aim of the course is to provide students with a solid introduction to the fields of population genetics, quantitative genetics, and ecological genetics. The concepts and research methods developed in these fields have undergone profound transformations; they are of fundamental importance in our understanding of evolutionary processes, both past and present. Students should gain an appreciation for the concepts, methods and explanatory power of evolutionary genetics. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Population genetics - Types and sources of genetic variation; randomly mating populations and the Hardy-Weinberg equilibrium; effects of inbreeding; natural selection; random genetic drift and effective population size; gene flow and hierarchical population structure; molecular population genetics: neutral theory of molecular evolution and basics of coalescent theory. Quantitative genetics - Continuous variation; measurement of quant. characters; genes, environments and their interactions; measuring their influence; response to selection; inbreeding and crossbreeding, effects on fitness; Fisher's fundamental theorem. Ecological Genetics - Concepts and methods for the study of genetic variation and its role in adaptation, reproductive isolation, hybridization and speciation | ||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts | ||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Hamilton, M.B. 2009. Population Genetics. Wiley-Blackwell, Chichester, U.K. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||
529-0731-00L | Nucleic Acids and Carbohydrates Note for BSc Biology students: Only one of the two concept courses 529-0731-00 Nucleic Acids and Carbohydrates (autumn semester) or 529-0732-00 Proteins and Lipids (spring semester) can be counted for the Bachelor's degree. | W | 6 credits | 3G | K. Lang, P. A. Kast, S. J. Sturla, H. Wennemers | ||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines | ||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines | ||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Structure, function and chemistry of nucleic acids and carbohydrates. DNA/RNA structure and synthesis; recombinant DNA technology and PCR; DNA arrays and genomics; antisense approach and RNAi; polymerases and transcription factors; catalytic RNA; DNA damage and repair; carbohydrate structure and synthesis; carbohydrate arrays; cell surface engineering; carbohydrate vaccines | ||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | No script; illustrations from the original literature relevant to the individual lectures will be provided weekly (typically as handouts downloadable from the Moodle server). | ||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Mainly based on original literature, a detailed list will be distributed during the lecture | ||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||
551-1299-00L | Bioinformatics ![]() | W | 6 credits | 4G | S. Sunagawa, P. Beltrao, V. Boeva, A. Kahles, C. von Mering, N. Zamboni | ||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Students will study bioinformatic concepts in the areas of metagenomics, genomics, transcriptomics, proteomics, biological networks and biostatistics. Through integrated lectures, practical hands-on exercises and project work, students will also be trained in analytical and programming skills to meet the emerging increase in data-driven knowledge generation in biology in the 21st century. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students will have an advanced understanding of the underlying concepts behind modern bioinformatic analyses at genome, metagenome and proteome-wide scales. They will be familiar with the most common data types, where to access them, and how to analytically work with them to address contemporary questions in the field of biology. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Course participants have already acquired basic programming skills in UNIX, Python and R. Students bring their own computer with keyboard, internet access (browser) and software to connect to the ETH network via VPN. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
|
Page 1 of 1