Search result: Catalogue data in Spring Semester 2024
MAS in Sustainable Water Resources ![]() The Master of Advanced Studies in Sustainable Water Resources is a 12 month full time postgraduate diploma programme. The focus of the programme is on issues of sustainability and water resources in Latin America, with special attention given to the impacts of development and climate change on water resources. The programme combines multidisciplinary coursework with high level research. Sample research topics include: water quality, water quantity, water for agriculture, water for the environment, adaptation to climate change, and integrated water resource management. Language: English. Credit hours: 66 ECTS. For further information please visit: http://www.mas-swr.ethz.ch/ | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() Electives: 6 credits has to be achieved. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
101-0259-00L | River Restoration ![]() | W | 3 credits | 3G | V. Weitbrecht, S. Knecht-Hipp, M. Mende, J. van der Meer, C. Weber | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Based on enhanced understanding of river morphodynamics and the ecosystem of riverscapes, the course introduces different river engineering techniques. It copes with the different expectations (space for agriculture, water for energy production, flood protection...) towards riverscapes in modern society. The students work on a project study with the goal of restoring a given river section. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | During this course, the students learn how to - describe the most important relations in river morphodynamics and their impact on the ecosystem of riverscapes - elaborate solutions within river restoration, dealing with the different societal expectations towards riverscapes. - deal with personal, social and technical obstacles in the planning of a river restoration project. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | River restoration aims to reestablish near natural processes in riverscapes to increase habitat quality and biodiversity. Based on enhanced understanding of river morphodynamics, the course introduces different engineering techniques with focus on sediment transport processes and flood protection. In addition, the course aims to cope with the different expectations (space for agriculture, water for energy production, flood protection, nature protection...) towards riverscapes in modern society. During the semester, the students work on a project study with the goal of restoring a river section with a certain focus topic. It follows a student-centered apporach, with field trips, a role play and interactive coaching sessions together with river restoration experts from engineering practice. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | No lecture notes | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literature recommendations are given during the semester | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Highly recommended as a technical preparation: River Engineering (Course 101-0258-00L, Autumn Semester) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0278-00L | Flood Protection | W | 3 credits | 2G | R. Boes, J. Eberli | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Concepts and structural measures to prevent or mitigate flood damage, planning methods to implement projects in practice | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | To get to know processes leading to flood damage, the different concepts and structural measures allowing to prevent or mitigate flood damage, as well as promising practical planning methods to implement flood protection measures in practice. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Explanation of relevant processes: flooding, aggradation, sedimentations, erosion, debris flows. Concept of different objectives of protection for various land uses (from rural areas to industrial regions). General possibilities of flood protection / control. Land use planning on the basis of hazard zones. Classical procedures against flood damage with the use of examples such as increase of flow capacity, release structures, flood detention basins, polder. Property protection as continuative measure. Maintenance. Considering of overload case, Emergency procedures. Damage determination and risk analysis. Management of residual risk. Conflict of objective during implementation of procedures. Situatively adjusted approach. Handling driftwood. Surface runoff. Examples of projects in Switzerland. Case studies (group work). Field trip. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Flood protection script | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Guidelines of Swiss federal administration (especially Federal Office for the Environment, FOEN) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
102-0838-00L | Water Supply, Sanitation and Waste Infrastructure and Services in Developing Countries | W | 3 credits | 2G | L. Strande | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to water supply, excreta, wastewater and solid waste management in developing countries. Highlights links between infrastructure, services and health, resource conservation and environmental protection. New concepts and approaches for sustainable sanitation infrastructure and services for developing countries - especially poor urban areas. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students receive an introduction to issues of water supply, excreta, waste water and solid waste management in developing countries. They understand the connections between water, wastewater and waste management, health, resource conservation and environmental protection. Besides, they learn how water supply, wastewater and solid waste infrastructure and services can be combined and improved, in order to achieve the development policy goals in terms of disease prevention, resource conservation, and environmental protection. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Overview of the global health situation, water supply, and liquid and solid waste management situation in developing countries. Technical and scientific fundamentals of water supply, sanitation and solid waste management. Material flows in water supply, sanitation and waste management. New concepts and approaches for sustainable sanitation infrastructure and services for developing countries - especially poor urban areas. Exercises: students will work in groups on a case study and develop improvement options for water, sanitation and waste management. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Course notes and further reading will be made available on the ETHZ Moodle portal. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | The selected literature references will be made available on Moodle. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Students will work in groups on a case study and develop improvement options for water, sanitation and waste management. The case study work will be marked (1/3 of final grade). Written Semesterendprüfung of 90 min (counts for 2/3 of final grade) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0514-00L | Energy Economics and Policy It is recommended for students to have taken a course in introductory microeconomics. If not, they should be familiar with microeconomics as in, for example,"Microeconomics" by Mankiw & Taylor and the appendices 4 and 7 of the book "Microeconomics" by Pindyck & Rubinfeld. | W | 3 credits | 2G | M. Filippini, S. Srinivasan | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | An introduction to energy economics and policy that covers the following topics: energy demand, investment in energy efficiency, investment in renewables, energy markets, market failures and behavioral anomalies, market-based and non-market based energy and climate policy instruments in industrialized and developing countries. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students will develop an understanding of economic principles and tools necessary to analyze energy issues and to understand energy and climate policy instruments. Emphasis will be put on empirical analysis of energy demand and supply, market failures, behavioral anomalies, energy and climate policy instruments in industrialized and developing countries, and investments in renewables and in energy-efficient technologies. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course provides an introduction to energy economics principles and policy applications. The first part of the course will introduce the microeconomic foundation of energy demand and supply as well as market failures and behavioral anomalies. In a second part, we introduce the concept of investment analysis (such as the NPV) in the context of renewable and energy-efficient technologies. In the last part, we use the previously introduced concepts to analyze energy policies: from a government perspective, we discuss the mechanisms and implications of market oriented and non-market oriented policy instruments as well as applications in developing countries. Throughout the entire course, we combine the material with insights from current research in energy economics. This combination will enable students to understand standard scientific literature in the field of energy economics and policy. Moreover, the class aims to show students how to relate current issues in the energy and climate spheres that influence industrialized and developing countries to insights from energy economics and policy. Course evaluation: at the end of the course, there will be a written exam covering the topics of the course. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | It is recommended for students to have taken a course in introductory microeconomics. If not, they should be familiar with microeconomics as in, for example, "Microeconomics" by Mankiw & Taylor and the appendices 4 and 7 of the book "Microeconomics" by Pindyck & Rubinfeld. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-6624-11L | Applied Time Series | W | 5 credits | 2V + 1U | M. Dettling | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course starts with an introduction to time series analysis (examples, goal, mathematical notation). In the following, descriptive techniques, modeling and prediction as well as advanced topics will be covered. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Getting to know the mathematical properties of time series, as well as the requirements, descriptive techniques, models, advanced methods and software that are necessary such that the student can independently run an applied time series analysis. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course starts with an introduction to time series analysis that comprises of examples and goals. We continue with notation and descriptive analysis of time series. A major part of the course will be dedicated to modeling and forecasting of time series using the flexible class of ARMA models. More advanced topics that will be covered in the following are time series regression, time series classification and spectral analysis. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script will be available. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course starts with an introduction to time series analysis that comprises of examples and goals. We continue with notation and descriptive analysis of time series. A major part of the course will be dedicated to modeling and forecasting of time series using the flexible class of ARMA models. More advanced topics that will be covered in the following are time series regression, time series classification and spectral analysis. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-1504-00L | Snowcover: Physics and Modelling | W | 4 credits | 3G | M. Schneebeli, R. Dadic | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Snow is a fascinating high-temperature material and relevant for applications in glaciology, hydrology, atmospheric sciences, polar climatology, remote sensing and natural hazards. This course introduces key concepts and underlying physical principles of snow, ranging from individual crystals to polar ice sheets. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The course aims at a cross-disciplinary overview about the phenomenology of relevant processes in the snow cover, traditional and advanced experimental methods for snow measurements and theoretical foundations with key equations required for snow modeling. Tutorials and short presentations will also consider the bigger picture of snow physics with respect to climatology, hydrology and earth science. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The lectures will treat snow formation, crystal growth, snow microstructure, metamorphism, ice physics, snow mechanics, heat and mass transport in the snow cover, surface energy balance, snow models, wind transport, snow chemistry, electromagnetic properties, and experimental techniques. The tutorials include a demonstration/exercise part and a presentation part. The demonstration/exercise part consolidates key subjects of the lecture using small data sets, mathematical toy models, order of magnitude estimates, image analysis and visualization, small simulation examples, etc. The presentation is given by the students, summarizing a relevant paper on the topic. The first practical experience with modern methods measuring snow properties can be acquired in the field excursion. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes, and selected publications. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | We strongly recommend the field excursion to Davos on Saturday, March 09, 2024, in Davos. The excursion will teach you the primary use of traditional and modern field techniques (snow profile, Near-infrared photography, SnowMicroPen), and you will have the chance to use the instruments yourself. The excursion includes visiting the SLF cold laboratories with the micro-tomography setup and the snowmaker. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4095-01L | Colloquium Atmosphere and Climate 1 ![]() ![]() | W | 1 credit | 1K | H. Wernli, D. N. Bresch, M. Brunner, N. Gruber, H. Joos, R. Knutti, U. Lohmann, C. Mohr, S. Schemm, S. I. Seneviratne, M. Wild | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Get insight into ongoing research in different fields related to atmospheric and climate science | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | To acquire credit points for this colloquium, please confirm your attendance of 8 colloquia per semester by using the form which is provided at the course webpage. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4095-02L | Colloquium Atmosphere and Climate 2 ![]() ![]() | W | 1 credit | 1K | H. Wernli, D. N. Bresch, M. Brunner, N. Gruber, H. Joos, R. Knutti, U. Lohmann, C. Mohr, S. Schemm, S. I. Seneviratne, M. Wild | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Get insight into ongoing research in different fields related to atmospheric and climate sciences | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | To acquire credit points for this colloquium, please confirm your attendance of 8 colloquia per semester by using the form which is provided at the course webpage. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
651-4095-03L | Colloquium Atmosphere and Climate 3 ![]() ![]() | W | 1 credit | 1K | H. Wernli, D. N. Bresch, M. Brunner, N. Gruber, H. Joos, R. Knutti, U. Lohmann, C. Mohr, S. Schemm, S. I. Seneviratne, M. Wild | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The colloquium is a series of scientific talks by prominent invited speakers assembling interested students and researchers from around Zürich. Students take part of the scientific discussions. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Get insight into ongoing research in different fields related to atmospheric and climate sciences | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | To acquire credit points for this colloquium, please confirm your attendance of 8 colloquia per semester by using the form which is provided at the course webpage. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1226-00L | Inter-Annual Phenomena and Their Prediction ![]() | W | 2 credits | 2G | C. Appenzeller | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course provides an overview of the current ability to understand and predict intra-seasonal and inter-annual weather and climate variability in the tropical and extra-tropical region and provides insights on how operational weather and climate services are organized. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students will acquire an understanding of the key atmosphere and ocean processes involved, will gain experience in analyzing and predicting weekly to inter-annual variability and learn how operational weather and climate services are organised and how scientific developments can improve these services. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course covers the following topics: Part 1: - Introduction, some basic concepts and examples of sub-seasonal and inter-annual variability - Weather and climate data and the statistical concepts used for analysing weather and climate variability (e.g. correlation analysis, teleconnection maps, EOF analysis) Part 2: - Inter-annual variability in the tropical region (e.g. ENSO, MJO) - Inter-annual variability in the extra-tropical region (e.g. Blocking systems, NAO, PNA, regimes) Part 3: - Prediction of sub-seasonal and inter-annual variability (statistical methods, probabilistic ensemble prediction systems, weekly, monthly and seasonal forecasts, seamless forecasts) - Verification and interpretation of probabilistic forecast systems - Climate change and inter-annual variability Part 4: - Scientific challenges for operational weather and climate services - A visit to the forecasting centre of MeteoSwiss | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A pdf version of the slides will be available at http://www.iac.ethz.ch/edu/courses/master/modules/interannual-phenomena.html | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | References are given during the lecture. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Permission from lecturers required for students with limited background in atmosphere and climate | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1232-00L | Radiation and Climate Change | W | 3 credits | 2G | M. Wild | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This lecture focuses on the prominent role of radiation in the energy balance of the Earth and in the context of past and future climate change. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The aim of this course is to develop a thorough understanding of the fundamental role of radiation in the context of Earth's energy balance and climate change. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course will cover the following topics: Basic radiation laws; sun-earth relations; the sun as driver of climate change (faint sun paradox, Milankovic ice age theory, solar cycles); radiative forcings in the atmosphere: aerosol, water vapour, clouds; radiation balance of the Earth (satellite and surface observations, modeling approaches); anthropogenic perturbation of the Earth radiation balance: greenhouse gases and enhanced greenhouse effect, air pollution and global dimming; radiation-induced feedbacks in the climate system (water vapour feedback, snow albedo feedback); climate model scenarios under various radiative forcings. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Slides will be made available | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | As announced in the course | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1252-00L | Climate Change Uncertainty and Risk: From Probabilistic Forecasts to Economics of Climate Adaptation ![]() | W | 3 credits | 2V + 1U | D. N. Bresch, R. Knutti | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course introduces the concepts of predictability, probability, uncertainty and probabilistic risk modelling and their application to climate modeling and the economics of climate adaptation. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students will acquire knowledge in uncertainty and risk quantification (probabilistic modelling) and an understanding of the economics of climate adaptation. They will become able to construct their own uncertainty and risk assessment models (in Python), hence basic understanding of scientific programming forms a prerequisite of the course. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The first part of the course covers methods to quantify uncertainty in detecting and attributing human influence on climate change and to generate probabilistic climate change projections on global to regional scales. Model evaluation, calibration and structural error are discussed. In the second part, quantification of risks associated with local climate impacts and the economics of different baskets of climate adaptation options are assessed – leading to informed decisions to optimally allocate resources. Such pre-emptive risk management allows evaluating a mix of prevention, preparation, response, recovery, and (financial) risk transfer actions, resulting in an optimal balance of public and private contributions to risk management, aiming at a more resilient society. The course provides an introduction to the following themes: 1) basics of probabilistic modelling and quantification of uncertainty from global climate change to local impacts of extreme events 2) methods to optimize and constrain model parameters using observations 3) risk management from identification (perception) and understanding (assessment, modelling) to actions (prevention, preparation, response, recovery, risk transfer) 4) basics of economic evaluation, economic decision making in the presence of climate risks and pre-emptive risk management to optimally allocate resources | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Powerpoint slides will be made available. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Many papers for in-depth study will be referred to during the lecture. For the exercises the CLIMADA platform- https://wcr.ethz.ch/research/climada.html - will be (extensively) used. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Hands-on experience with probabilistic climate models and risk models will be acquired in the tutorials; hence good understanding of scientific programming forms a prerequisite of the course, in Python (teaching language, object oriented) or similar. Basic understanding of the climate system, e.g. as covered in the course 'Klimasysteme' is required. Examination: graded tutorials during the semester (benotete Semesterleistung) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1260-00L | Climatological and Hydrological Field Work ![]() ![]() | W | 2.5 credits | 3P | M. Hirschi, M. Rösch, S. I. Seneviratne | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Practical work using selected measurement techniques in meteorology and hydrology. The course consists of field work with different measuring systems to determine turbulence, radiation, soil moisture, evapotranspiration, discharge and the atmospheric state as well as of data analysis. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Learning of elementary concepts and practical experience with meteorological and hydrological measuring systems as well as data analysis. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Practical work using selected measurement techniques in meteorology and hydrology. The course consists of field work with different measuring systems to determine turbulence, radiation, soil moisture, evapotranspiration, discharge and the atmospheric state as well as of data analysis. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course takes place in the hydrological research catchment Rietholzbach (field work) and at ETH (data analysis) as a block course. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1342-00L | Agriculture and Water Quality | W | 3 credits | 3G | C. H. Stamm, E. Frossard, H. Singer | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Linking scientific basics of different disciplines (agronomy, soil science, aquatic chemistry) with practical questions in the context of real-world problems of diffuse pollution due to agricultural production. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course discusses the application of scientific understanding in the context of real-world situations of diffuse pollution caused by agricultural production. It aims at understanding the relevant processes, analysing diffuse pollution and developing mitigation strategies starting from legal requirements regarding water quality. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Diversity of diffuse agrochemical pollution - Agronomic background on the use of agrochemicals - Transport of agrochemicals from soils to water bodies - Development of legal requirements for water quality - Monitoring strategies in water bodies - Mitigation strategies - Relevant spatial and temporal scales - Exercises including all major topics - 1 field excursion - 2 - 3 external guest speakers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts will be provided for each topic. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Some exercises require R (http://www.r-project.org/) and a laptop during the class. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
701-1522-00L | Multi-Criteria Decision Analysis ![]() | W | 3 credits | 2G | J. Lienert | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This introduction to "Multi-Criteria Decision Analysis" combines prescriptive Decision Theory (Multi-Attribute Value and Utility Theory) with practical application and computer-based decision support systems. Aspects of descriptive (behavioral) Decision Theory (psychology) are introduced. Participants apply the theory to an environmental decision problem (group work). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The main objective is to learn "Multi-Attribute Value Theory" (MAVT) and apply it step-by-step to an environmental decision problem. Multi-Attribute Utility Theory" (MAUT) is shortly introduced. At the end, participants should be able to carry out MCDA on their own, in research projects and in practice (e.g., working as consultant). The participants learn how to structure complex decision problems and break them down into manageable parts. An important aim is to integrate the objectives and preferences of different decision-makers or stakeholders. The participants will practice how to elicit subjective (personal) preferences from stakeholders with structured interviews. They will learn to include uncertainty in decision models and test assumptions with sensitivity analyses. Participants should have an understanding of people's limitations to decision-making, based on insights from descriptive Decision Theory. They will use formal computer-based tools to integrate "objective / scientific" data with "subjective / personal" preferences to find consensus solutions that are acceptable to different stakeholders. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | GENERAL DESCRIPTION Multi-Criteria Decision Analysis is an umbrella term for a set of methods to structure, formalize, and analyze complex decision problems involving multiple objectives (aims, criteria), many different alternatives (options, choices), and different stakeholders which may have conflicting preferences. Uncertainty (e.g., of environmental data) adds to the complexity of environmental decisions. MCDA helps to make decision problems more transparent and guides stakeholders into making rational choices. Today, MCDA-methods are being applied to many complex decision situations. This class is designed for participants interested in transdisciplinary approaches that help to better understand real-world decision problems and that contribute to finding sustainable solutions. The course focuses on "Multi-Attribute Value Theory" (MAVT). It gives a short introduction to "Multi-Attribute Utility Theory" (MAUT) and behavioral Decision Theory, the psychological field of decision-making. STRUCTURE The course consists of a combination of lectures, exercises and discussion in the class, exercises in small groups, and reading. Some exercises are computer assisted, applying the ValueDecisions app, a browser-based MCDA software in a user-friendly R-shiny interface. For the analyses, participants need a laptop. The participants will choose an environmental case study to work on in small groups throughout the semester. They will summarize this work in a graded report. Additional reading of selected sections in the textbook Eisenführ et al. (2010) is required to understand the theory. Participants’ individual learning of MCDA will be tested in one mandatory quiz. GRADING The grade for the course is determined by one mandatory quiz at a fixed date that is individually completed during class (30%) and a semester-long group project with a final written group report to be delivered at the end of the semester (70%). There is no possibility to repeat the quiz! If participants miss the mandatory quiz, it is graded 1. Last cancellation / deregistration date for this graded semester performance: second Tuesday in March! Please note that after that date no deregistration will be accepted and the course will be considered as “fail” / unsatisfactory grade. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | No script (see below) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Theory is supported by reading selected sections in: Eisenführ, Franz; Weber, Martin; and Langer, Thomas (2010) Rational Decision Making. 1st edition, 447 p., Springer Verlag, ISBN 978-3-642-02850-2. Additional reading material will be recommended during the course. Lecture slides will be made available for download. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course requires some understanding of (basic) mathematics. The "formal" parts are not too complicated and we will guide students through the mathematical applications and use of the ValueDecisions app (software). Participants should bring their own laptop (let us know if this is not possible). The course is limited to 30 participants (first come, first served). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
|
Page 1 of 1