Search result: Catalogue data in Autumn Semester 2024
Integrated Building Systems Master ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-1633-00L | Energy Conversion This course is intended for students outside of D-MAVT. | W | 4 credits | 3G | G. Sansavini, S. A. Hosseini, I. Karlin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course provides the students with an introduction to thermodynamics and energy conversion. Students shall gain basic understanding of energy and energy interactions as well as their link to energy conversion technologies. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Thermodynamics is key to understanding and use of energy conversion processes in Nature and technology. Main objective of this course is to give a compact introduction into basics of Thermodynamics: Thermodynamic states and thermodynamic processes; Work and Heat; First and Second Laws of Thermodynamics. Students shall learn how to use energy balance equation in the analysis of power cycles and shall be able to evaluate efficiency of internal combustion engines, gas turbines and steam power plants. The course shall extensively use thermodynamic charts to building up students’ intuition about opportunities and restrictions to increase useful work output of energy conversion. Thermodynamic functions such as entropy, enthalpy and free enthalpy shall be used to understand chemical and phase equilibrium. The course also gives introduction to refrigeration cycles, combustion and refrigeration. The course compactly covers the standard course of thermodynamics for engineers, with additional topics of a general physics interest (nonideal gas equation of state and Joule-Thomson effect) also included. In the course "Energy Conversion", the competencies of process understanding and system understanding are applied and examined and the competencies process understanding and modeling are taught. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Thermodynamic systems, states and state variables 2. Properties of substances: Water, air and ideal gas 3. Energy conservation in closed and open systems: work, internal energy, heat and enthalpy 4. Second law of thermodynamics and entropy 5. Energy analysis of steam power cycles 6. Energy analysis of gas power cycles 7. Refrigeration and heat pump cycles 8. Nonideal gas equation of state and Joule-Thomson effect 9. Maximal work and exergy 10. Mixtures 11. Chemical reactions and combustion systems; chemical and phase equilibrium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture slides and supplementary documentation will be available online. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Thermodynamics: An Engineering Approach, by Cengel, Y. A. and Boles, M. A., McGraw Hill | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | This course is intended for students outside of D-MAVT. Students are assumed to have an adequate background in calculus, physics, and engineering mechanics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-0203-00L | Mathematics ![]() | W | 4 credits | 3V + 1U | C. Busch | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course gives an introduction to the following subjects: calculus, multivariable calculus, differential equations, linear algebra (systems of linear equations, matrices, eigenvectors). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Basic mathematical knowledge for engineers. Mathematics as a tool to solve engineering problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course gives an introduction to the following subjects: calculus, multivariable calculus, differential equations, linear algebra (systems of linear equations, matrices, eigenvectors). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Tom M. Apostol, Calculus, Volume 1, One-Variable Calculus with an Introduction to Linear Algebra, 2nd Edition, Wiley Tom M. Apostol, Multi-Variable Calculus and Linear Algebra with Applications, 2nd Edition, Wiley Ulrich L. Rohde, Introduction to differential calculus : Systematic studies with engineering applications for beginners, Wiley. Ulrich L. Rohde, Introduction to integral calculus : Systematic studies with engineering applications for beginners, Wiley. Serge Lang, Introduction to Linear Algebra, 2nd edition, Springer New York. Serge Lang, A First Course in Calculus, 5th edition, Springer New York. A list will be handed out in the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
066-0427-00L | Design and Building Process MIBS ![]() | W | 2 credits | 2V | A. Paulus, S. Menz | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Design and Building Process MIBS is a brief manual for prospective architects and engineers covering the competences and the responsibilities of all involved parties through the design and building process. Lectures on six compact aspects gaining importance in a increasingly specialised, complex and international surrounding. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Participants will come to understand how they can best navigate the design and building process, especially in relation to understanding their profession, gaining a thorough knowledge of rules and regulations, as well as understanding how involved parties' minds work. They will also have the opportunity to investigate ways in which they can relate to, understand, and best respond to their clients' wants and needs. Finally, course participants will come to appreciate the various tools and instruments, which are available to them when implementing their projects. The course will guide the participants, bringing the individual pieces of knowledge into a superordinate relationship. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Design and Building Process MIBS is a brief manual for prospective architects and engineers covering the competencies and the responsibilities of involved parties through the design and building process. Three compact chapters regarding the established building culture are gaining importance in an increasingly specialised, complex and international surrounding. Lectures on the topics of competence, organisation, agility, monitoring, interest, and the environment will guide the participants, bringing the individual pieces of knowledge into a superordinate relationship. The course introduces the key figures, depicts the criteria of the project and highlights the proveded services of the consultants. In addition to discussing the basics, the terminologies and the tendencies, the lecture units will refer to the studios as well as the practice: Teaching-based workshops will compliment and deepen the understanding of the three selected aspects of profession, methodology, and environment. The course is presented as a moderated seminar to allow students the opportunity for invididual input: active cololaboration between the students and their tutor therefore required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | https://map.arch.ethz.ch | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
103-0317-00L | Spatial Planning and Development Only for master students, otherwise a special permisson by the lecturer is required. | W | 3 credits | 2G | D. Kaufmann, A. Kuitenbrouwer | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course deals with theoretical, methodological and practical foundations around the understanding and production of urban space. It discusses theoretical planning frameworks, and tasks of spatial planning at various scales, addresses current and future challenges of spatial development and reviews approaches for a sustainable development in Switzerland and beyond. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The overall aim of the course is to raise students’ awareness and curiosity about the aspects that guide and shape our environment. Through lectures, readings, discussions, and exercises, the course seeks to achieve this goal by accumulating crucial notions from both theoretical and practice-based examples, and applying such knowledge into tasks of spatial planning. At the end of this course, students should feel empowered to critically engage with the teaching topic from a variety of approaches. By taking up the lecture, the students should be able to to analyse, interpret and reflect complex cross-scale tasks of spatial development and transformation, and to use their theoretical, methodical and professional knowledge to tackle them. You as students will... ... assess present and future core challenges of spatial planning and development. ... discuss the role of spatial planning and development in shaping our living environment. ... differentiate the levels, scales and tasks of spatial planning instruments and processes. … reflect on theoretical concepts and pratical examples of decision-making of spatial tasks. ... identify and apply spatially relevant principles and systems for action-oriented planning and decision-making. ... acquire theoretical, methodological, practical know-how to examine, clarify, and solve tasks on spatial development | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Spatial development as a discipline deals with the development, (trans)formation, and arrangement of our urban environment. We simultaneously perceive and contribute to its transformation, making space the result of manifold intended and unintended changes. To mediate between different demands, interests and interventions of multiple actors, a forward-looking, evidence-based, and action-oriented planning is necessary. As guidance for future action, (spatial) planning has to be committed to the sustainable handling as well as just allocation of resources, in particular of the non-replicable resource land. The course focuses on both theoretical concepts and practice-oriented approaches to gain knowledge and be equipped to address current issues in spatial planning and development. This is mirrored in the course’s structure made of both of lectures and exercises. The lecture series introduces necessary key concepts and covers the following main topics: - Drivers of spatial development, inward development, core tasks and current challenges for (spatial) planners. - Interplay of formal and informal planning instruments across scales and actors. - Differentiation urban typologies, their characteristics and challenges - Types of spatial analysis and key figures - Planning approaches and the (political) steering of spatial development. - Types of processes and participation in spatial development. - Approaches for planning complex urban situations - Concepts for sustainable development The exercises provide a framework for practical application of the learned theoretical concepts of spatial planning to real-life situations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A course will be set up on Moodle for the provision of lectures and documents, to upload group deliverables and to ask questions in a discussion Forum. All documents provided are exclusively available for use within this course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0527-10L | Materials and Constructions | O | 4 credits | 2G | G. Habert, D. M. L. Ardant | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Building materials with a special focus on regenerative materials: earth, bio-based and reuse. Looking at material sourcing, properties and performance, as well as how they are integrated in the buildings (building envelope and detailing). Choice of material is done out of sustainability concern. Comfort, moisture transfer and building physics with hygroscopic materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Special focus on regenerative materials: earth, bio-based and reuse The students will acquire knowledge in the following fields: Fundamentals of material performance Introduction to durability problems of building facades Materials for the building envelope: - Overview of structural materials and systems: concrete, steel, stone, earth, wood and bamboo - Insulating materials (bio-based vs conventional) Assessment of materials and components behaviour and performance Degradation risks connected to insulation and post-insulation Aspects of sustainability and durability Special focus on comfort, moisture transfer and building physics with hygroscopic materials will be done. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction Sustainable cement and concrete Earth construction Stone Steel Bamboo Timber construction Building physic and conventional insulation Bio-based insulation and degradation risks with insulation Hygrothermal properties of building materials and dynamic numerical simulations Efficiency and sustainability of modern window glazing Course will have general lectures + hands on lab @home experiments + group project for implementation of regenerative materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-8011-00L | Building Physics: Theory and Applications ![]() ![]() Enrolment after agreement with the lecturer only. | O | 4 credits | 3V + 1U | A. Kubilay, X. Zhou, L. Fei, A. Rubin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Principles of heat and mass transport, hygro-thermal performance, durability of the building envelope and interaction with indoor and outdoor climates, applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students will acquire in the following fields: - Principles of heat and mass transport and its mathematical description. - Indoor and outdoor climate and driving forces. - Hygrothermal properties of building materials. - Building envelope solutions and their construction. - Hygrothermal performance and durability. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Principles of heat and mass transport, hygro-thermal performance, durability of the building envelope and interaction with indoor and outdoor climates, applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts, supporting material and exercises are provided online via Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Priority will be given to students in Integrated Building Systems Master (MIBS). Please send an email to the main lecturer, if you are not a MIBS student. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0389-00L | Technology and Innovation Management | O | 3 credits | 2G | S. Brusoni, A. Zeijen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course focuses on the sources of innovation (with a specific focus on digital technologies), the tools and techniques that organizations deploy to innovate routinely, and the strategic implications of technical change at different levels of analysis: individuals, firms and whole ecosystems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course intends to enable all students to: - Acquire and understand the basic jargon, concepts and methods necessary to discuss, in a precise and concise manner, innovation processes and their outcomes at different levels of analysis - Analyze the differences between individual and organizational decision processes and their innovative outcomes - Evaluate critically the potential of different (digital) technologies to impact business organizations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Organizations and people are faced with a fundamental decision: they have to allocate resources between well-known tasks that reliably generate positive results; or explore new ways of doing things, new technologies, products and services. The latter is a high risk choice. Its rewards can be high, but the chances of success are small. How do firms organize to take these decisions? What kind of management skills are necessary to take them? What kind of tools and methods are deployed to sustain managerial decision-making in highly volatile environments? These are the central questions on which this course focuses, relying on a combination of lectures, case-based discussion, and guest speakers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Slides will be available on the Moodle page | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Readings will be available on the Moodle page | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course content and methods are designed for students with some background in management and/or economics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0503-00L | Principles of Microeconomics ![]() | O | 3 credits | 2G | M. Filippini | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course introduces basic principles, problems and approaches of microeconomics. This provides the students with reflective and contextual knowledge on how societies use scarce resources to produce goods and services and ensure a (fair) distribution. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The learning objectives of the course are: (1) Students must be able to discuss basic principles, problems and approaches in microeconomics. (2) Students can analyse and explain simple economic principles in a market using supply and demand graphs. (3) Students can contrast different market structures and describe firm and consumer behaviour. (4) Students can identify market failures such as externalities related to market activities and illustrate how these affect the economy as a whole. (5) Students can also recognize behavioural failures within a market and discuss basic concepts related to behavioural economics. (6) Students can apply simple mathematical concepts on economic problems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The resources on our planet are finite. The discipline of microeconomics therefore deals with the question of how society can use scarce resources to produce goods and services and ensure a (fair) distribution. In particular, microeconomics deals with the behaviour of consumers and firms in different market forms. Economic considerations and discussions are not part of classical engineering and science study programme. Thus, the goal of the lecture "Principles of Microeconomics" is to teach students how economic thinking and argumentation works. The course should help the students to look at the contents of their own studies from a different perspective and to be able to critically reflect on economic problems discussed in the society. Topics covered by the course are: - Supply and demand - Consumer demand: neoclassical and behavioural perspective - Cost of production: neoclassical and behavioural perspective - Welfare economics, deadweight losses - Governmental policies - Market failures, common resources and public goods - Public sector, tax system - Market forms (competitive, monopolistic, monopolistic competitive, oligopolistic) - International trade | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes, exercises and reference material can be downloaded from Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | N. Gregory Mankiw and Mark P. Taylor (2023), "Economics", 6th edition, South-Western Cengage Learning. For students taking only the course 'Principles of Microeconomics' there is a shorter version of the same book: N. Gregory Mankiw and Mark P. Taylor (2023), "Microeconomics", 6th edition, South-Western Cengage Learning. Complementary: R. Pindyck and D. Rubinfeld (2018), "Microeconomics", 9th edition, Pearson Education. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-8007-00L | Urban Physics ![]() ![]() Does not take place this semester. | W | 3 credits | 3G | D. W. Brunner, H. Wernli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Urban physics: wind, wind comfort, pollutant dispersion, natural ventilation, driving rain, heat islands, climate change and weather conditions, urban acoustics and energy use in the urban context. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | - Basic knowledge of the global climate and the local microclimate around buildings - Impact of urban environment on wind, ventilation, rain, pollutants, acoustics and energy, and their relation to comfort, durability, air quality and energy demand - Application of urban physics concepts in urban design | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Climate Change. The Global Picture: global energy balance, global climate models, the IPCC process. Towards regional climate scenarios: role of spatial resolution, overview of approaches, hydrostatic RCMs, cloud-resolving RCMs - Urban micro climate and comfort: urban heat island effect, wind flow and radiation in the built environment, convective heat transport modelling, heat balance and ventilation of urban spaces - impact of morphology, outdoor wind comfort, outdoor thermal comfort, - Urban energy and urban design. Energy performance of building quarters and cities, decentralized urban energy production and storage technologies, district heating networks, optimization of energy consumption at district level, effect of the micro climate, urban heat islands, and climate change on the energy performance of buildings and building blocks. - Wind driving rain (WDR): WDR phenomena, WDR experimental and modeling, wind blocking effect, applications and moisture durability - Pollutant dispersion. pollutant cycle : emission, transport and deposition, air quality - Urban acoustics. noise propagation through the urban environment, meteorological effects, urban acoustic modeling, noise reduction measures, urban vegetation - Practical exercise on climatic data collection and analyze | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The course lectures and material are provided online via Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | For MIBS Master students 151-8011-ooL Building Phyics Theory & Application is a pre-requisit for this course or instructor permission. For others no prior knowledge is required. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
066-0421-00L | Building Systems I ![]() | O | 3 credits | 3G | I. Hischier, L. Baldini, L. O. Grobe, F. M. Meggers, A. Schlüter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Building Systems I gives an overview of fundamentals and concepts relevant for the design of building systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The course has the following learning objectives: - Knowledge of the fundamentals, principles and technologies for building heating, cooling, ventilation and electricity supply. - Knowledge of the integration and interdependencies of building systems and building structure, construction and aesthetics - Ability to estimate relevant quantities and qualities for heating/cooling/ventilation/electricity of buildings and the related supply systems - Ability to evaluate and choose an approach for sustainable heating/cooling/ventilation/electricity, the system and its components - Synthesis in own integrated design projects | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | 1. Comfort & Environment 2. Heating / cooling concepts and demand 3. Natural / mechanical ventilation concepts and demand 4. Solar generation / electricity storage and demand 5. Information & Communication Technologies | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0608-00L | Design-Integrated Life Cycle Assessment | W | 4 credits | 2G | G. Habert, F. Belizario Silva, A. Rodionova | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Currently, Life Cycle Assessment (LCA) is applied as an ex-post design evaluation of buildings, but rarely used to improve the building during the design process. The aim of this course is to apply LCA during the design of buildings by means of a digital, parametric tool. The necessary fundamentals of the LCA method will be taught following a lecture on demands approach. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The course will follow two main objectives and a third optional objective, depending on the design projects the students’ choose. At the end of the course, the students will: 1. Know the methodology of LCA 2. Be able to apply LCA in the design process to assess and improve the environmental performance of their projects 3. Be able to use the parametric LCA tool and link it to additional performance assessment tools for a holistic optimisation | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course will be structured into two parts, each making up about half of the semester. Part I: Exercises with lectures on demand The first six individual courses will follow the “lectures on demand” approach. Small “hands-on” exercises focusing on one specific aspect will be given out and the necessary background knowledge will be provided in the form of short input lectures when questions arise. The following topics will be discussed during the first part: 1) LCA basic introduction 2) System boundaries, functional unit, end of life 3) Carbon budget and LCA benchmarks 4) BIM-LCA, available calculation tools and databases 5) Integrated analysis of environmental and cost assessment 6) Bio-based carbon storage Part II: Project-based learning In the second part, the students will work on their individual project in groups of three. For the design task, the students will bring their own project and work on improving it. The projects can be chosen depending on the students background and range from buildings to infrastructure projects. Intermediate presentations will ensure the continuous work and make sure all groups are on the same level and learn from each other. During this part, the following hands-on tutorials will be given: 1) Introduction to Rhinoceros 6 and 7 2) Introduction to grasshopper 3) Integrated assessment tools (ladybug tools) 4) Introduction to in-house grasshopper plugin for LCA analysis | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | As the course follows a lecture on demand approach, the lecture slides will be provided after each course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The students are expected to work out of class as well. The course time will be used by the teachers to answer project-specific questions. The lecture series will be conducted in English and is aimed at students of master's programs, particularly in civil engineering and MIBS. No lecture will be given during Seminar week. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0209-00L | Renewable Energy Technologies ![]() | W | 4 credits | 3G | A. Bardow, E. Casati | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course covers the key concepts and aspects involved in: (i) the economics of renewable energy and its integration in the energy system, (ii) the engineering of prominent renewable energy technologies (solar, wind, hydro, geothermal and bioenergy), and (iii) energy storage, renewable transport and renewable heating & cooling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students learn the potential and limitations of renewable energy technologies and their contribution towards sustainable energy utilization. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture Notes containing copies of the presented slides. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisite: strong background on the fundamentals of engineering thermodynamics, equivalent to the material taught in the courses Thermodynamics I, II, and III of D-MAVT. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0123-00L | Structural Design | W | 3 credits | 2G | J. Pauli, F. Bertagna | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The goal of the course is to introduce students to Structural Design. The course fosters the development of a design thinking that emerges from the coexistence of a number of design parameters and performance criteria related to force flow, construction technologies, material use, and spatial qualities. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | After a successful completion of the course, students will be able to: 1. Critically evaluate structural design concepts based on their impact and implications beyond the sole structural performance 2. Identify the most relevant design parameters and performance criteria for a given design task and select adequate tools to effectively integrate them as part of the design process 3. Develop structural systems in compliance with structural, spatial, and environmental design aspects simultaneously | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The goal of the course is to introduce students to Structural Design. The course fosters the development of a design thinking that emerges from the coexistence of a number of design parameters and performance criteria related to force flow, construction technologies, material use, and spatial qualities. Students will learn about diverse tools that allow for controlling such a complex blend of parameters and criteria at the interface between different disciplines such as structural engineering and architecture. These tools will include physical models, graphical methods, and digital tools. After a series of lectures and workshops, students will work on a design exercise that represents the core of the entire course. The design exercise is an opportunity to deal with an open-ended task that does not admit a univocal answer. In fact, besides structural performance, design options will be discussed and evaluated through a set of criteria including spatial qualities, constructability, and environmental footprint. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0909-00L | Chemistry | W | 4 credits | 2V + 2U | D. J. Norris | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This is a general chemistry course aimed at first-year bachelor students in the Department of Mechanical and Process Engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The aims of the course are: 1) To provide a thorough understanding of the basic principles of chemistry and its application, 2) To develop an understanding of the atomic and molecular nature of matter and of the chemical reactions that describe its transformations, and 3) To emphasize areas considered most relevant in an engineering context. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Electronic structure of atoms, chemical bonding, molecular geometry and bonding theories, intermolecular forces, gases, thermodynamics, chemical thermodynamics, chemical kinetics, equilibria, liquids and solutions, acids and bases, redox- and electrochemistry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The instructor's lecture notes will be available prior to every lecture and can be downloaded from Moodle. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | The course is based on "Chemistry: The Central Science" by Brown, LeMay, Bursten, Murphy, Woodward, and Stoltzfus. Pearson, 15th Edition in SI units (global edition). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0245-00L | Energy Systems Analysis: an Introduction and Overview with Applications | W | 4 credits | 2V + 2U | R. McKenna, P. Burgherr, E. Panos, R. Sacchi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introductory (advanced Bachelor or beginner Master level) course on Energy Systems Analysis, providing an overview of the field and methods. After an introduction to systems thinking and characterisation of technologies, three main blocks cover with Lifecycle Assessment (LCA, 3 units), bottom-up linear optimisation models (5 units) and Multi-Criteria Decision Analysis (MCDA, 3 units). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | - Analyse energy technologies with respect to different criteria/characteristics - Discuss and debate the pros and cons of different ESA models/approaches (for specific applications) - Explain the system-level interdependencies/interconnections within the energy system - Evaluate the effect of uncertainties and “the human dimension” on ESA and scenarios | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course provides an introduction and overview to the most well-established models and methods of energy systems analysis, in each case introducing students to the theory and assumptions of the method, strengths and weaknesses of the specific approach, and case studies for exemplary energy technologies and systems. The students are taught to understand and will be able to apply the basic principles of these methods in the context of targeted assignments relating to real-world energy systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | No but slides are provided before the lectures and videos recorded. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Will be provided during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | No specific prerequisities, some background in energy-related topics in the Bachelor would be beneficial. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
![]() ![]() | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-0647-00L | Introduction to Mathematical Optimization | W | 5 credits | 2V + 1U | D. Adjiashvili | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to basic techniques and problems in mathematical optimization, and their applications to a variety of problems in engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The goal of the course is to obtain a good understanding of some of the most fundamental mathematical optimization techniques used to solve linear programs and basic combinatorial optimization problems. The students will also practice applying the learned models to problems in engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Topics covered in this course include: - Linear programming (simplex method, duality theory, shadow prices, ...). - Basic combinatorial optimization problems (spanning trees, shortest paths, network flows, ...). - Modelling with mathematical optimization: applications of mathematical programming in engineering. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Information about relevant literature will be given in the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | This course is meant for students who did not already attend the course "Linear & Combinatorial Optimization", which is a more advance lecture covering similar topics. Compared to "Linear & Combinatorial Optimization", this course has a stronger focus on modeling and applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0477-00L | Acoustics I ![]() | W | 3 credits | 2G | R. Pieren | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to the fundamentals of acoustics in the field of sound field calculations, measurement of acoustical events, outdoor sound propagation and room acoustics of large and small enclosures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Understanding of the basic acoustical concepts and methods. Ability to understand the technical and scientific literature. Confidence in the use of measuring instruments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Fundamentals of acoustics, calculation of sound fields, measurement and analysis of acoustical events, anatomy and properties of the ear, outdoor sound propagation, absorption and transmission of sound, room acoustics of large and small enclosures, noise and noise control. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | yes | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0577-00L | An Introduction to Sustainable Development in the Built Environment | W | 3 credits | 2G | G. Habert, A. Komkova | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | In 2015, the UN Conference in Paris shaped future world objectives to tackle climate change. This decarbonization strategy is additional to Sustainable Development goals formulated the same year by the UN general assembly. What does that mean for the built environment? This course provides an introduction to the notion of sustainable development when applied to our built environment. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | At the end of the semester, the students have an understanding of the term of sustainable development, its history, the current political and scientific discourses and its relevance for our built environment. In order to address current challenges of climate change mitigation and resource depletion, students will learn a holistic approach of sustainable development. Ecological, economical and social constraints will be presented and students will learn about methods for argumentation and tools for assessment (i.e. life cycle assessment). For this purpose an overview of sustainable development is presented with an introduction to the history of sustainability and its today definition as well as the role of cities, urbanisation and material resources (i.e. energy, construction material) in social economic and environmetal aspects. The course aims to promote an integral view and understanding of sustainability and describing different spheres (social/cultural, ecological, economical, and institutional) that influence our built environment. Students will acquire critical knowledge and understand the role of involved stakeholders, their motivations and constraints, learn how to evaluate challenges, identify deficits and define strategies to promote a more sustainable construction. Notion of environmental justice and regenerative practices will be addressed. After the course students should be able to define the relevance of specific local, regional or territorial aspects to achieve coherent and applicable solutions toward sustainable development. The course offers an environmental, socio-economic and socio-technical perspective focussing on buildings, cities and their transition to resilience with sustainable development. Students will learn on theory and application of current scientific pathways towards sustainable development. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The following topics give an overview of the themes that are to be worked on during the lecture. - Overview on the history and emergence of sustainable development - Overview on the current understanding and definition of sustainable development and beyond Methods - Method 1: Life cycle assessment (planning, construction, operation/use, deconstruction) - Method 2: Life Cycle Costing - Method 3: Labels and certification - Method 4: Material Flow Analysis Main issues: - Operation energy at building, urban and national scale - Mobility and density questions - Embodied energy for developing and developed world Values: limits efficiency environmental justice regeneration - Synthesis: Transition to sustainable development | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | All relevant information will be online available before the lectures. For each lecture slides of the lecture will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | A list of the basic literature will be offered on a specific online platform, that could be used by all students attending the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
101-0417-00L | Transport Planning Methods | W | 6 credits | 4G | E. Heinen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course provides the necessary knowledge to develop models to understand, to support and to evaluate the solution of given planning problems. The course is composed of a lecture part, providing the theoretical knowledge, and an applied part in which students develop their own models in order to evaluate a transport project/policy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | - Appraise the role of theory and data in transport planning - Differentiate and appraise different transport planning methods (causality, 4 stage and agent based modeling, cost-benefit analysis) - Construct a transport model by statistical methods and algorithms commonly used in transport planning - Propose a modeling framework to analyze transport planning challenges. a decision-making supporting tool | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course provides the necessary knowledge to develop models to understand travel behaviour and travel demand, and to support the solution of given planning problems. It also introduces cost-benefit analysis as a decision-making tool. Examples of such planning problems are the estimation of traffic volumes, prediction of estimated utilization of new public transport lines, and evaluation of effects (e.g. change in emissions of a city) triggered by building new infrastructure and changes to operational regulations. To cope with that, the problem is divided into sub-problems, which are solved using various statistical models and algorithms. The course is composed of a lecture part, providing the theoretical knowledge, and an applied part in which students develop their own models in order to analyse travel behaviour, develop a traditional transport model and to evaluate a transport project/ policy by means of cost-benefit analysis. Regular lab session take place to guide and support students with the applied part of the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Moodle platform (enrollment needed) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Willumsen, P. and J. de D. Ortuzar (2024) Modelling Transport, Wiley, Chichester. Van Wee, B., Annema, J.A., Banister, D. and Pudāne, B. (2023) The Transport System and Transport Policy, An Introduction. Second Edition. Cheltenham, UK • Northampton, MA, USA Pearl, J., Glymour, M., and Jewell N.P. (2016) Causal Inference in Statistics. Wiley and Sons. Cascetta, E. (2001) Transportation Systems Engineering: Theory and Methods, Kluwer Academic Publishers, Dordrecht. Sheffi, Y. (1985) Urban Transportation Networks: Equilibrium Analysis with Mathematical Programming Methods, Prentice Hall, Englewood Cliffs. Other: Schnabel, W. and D. Lohse (1997) Verkehrsplanung, 2. edn., vol. 2 of Grundlagen der Strassenverkehrstechnik und der Verkehrsplanung, Verlag für Bauwesen, Berlin. McCarthy, P.S. (2001) Transportation Economics: A case study approach, Blackwell, Oxford. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
363-0387-00L | Corporate Sustainability | W | 3 credits | 2G | V. Hoffmann, C. Bening-Bach, B. Girod, L. Miehé | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The lecture explores current challenges of corporate sustainability and prepares students to become champions for sustainable business practices. The module combines asynchronous videos, live sessions, with a group work phase between weeks 5-10 of semester during which students deep-dive into one of 10 sustainability challenges. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students - assess the limits and the potential of corporate sustainability for sustainable development - develop competencies that are useful in the context of corporate sustainability and beyond (analytical competency, critical thinking, problem solving) - recognize and realize opportunities through team work for corporate sustainability in a business environment - present strategic recommendations in teams | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Corporate Sustainability is the flagship course of the Group for Sustainability and Technology at D-MTEC. In this course, students learn about key concepts in corporate sustainability and develop skills to implement them in the real world. The course prepares students for making well-informed sustainability decisions in their future careers. The course uses constructive alignment to bring the various innovative teaching and learning elements (e.g., case-based experiential learning, reflective thinking and blended learning with videos and quizzes) into a coherent transformational journey. Students can now flexibly, efficiently, and effectively acquire the conceptual foundations that are essential for a substantial understanding of corporate sustainability. For part of the course, students work in groups to complete a set of graded assignments designed to guide them into a deep dive on a selected corporate sustainability challenge. Please note that full participation in this part is essential, so make sure you are available. Furthermore, these group assignments count towards the overall grade for the course. For further details on the course structure etc. visit the following link: http://www.sustec.ethz.ch/teaching/lectures/corporate-sustainability.html | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Presentation slides will be made available on Moodle after lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literature recommendations will be distributed via Moodle, and are available from the start of the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | TEACHING FORMAT/ ATTENDANCE: The course includes several mandatory sessions that participants must attend to successfully earn credit points. It is not possible to take the class purely online | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies![]() |
|
Page 1 of 3
All