Search result: Catalogue data in Autumn Semester 2024
Mechanical Engineering Master | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Core Courses | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Number | Title | Type | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0105-00L | Imaging in Fluid Dynamics | W | 4 credits | 3G | F. Coletti | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This is a laboratory-based course on imaging techniques for the measurement of fluid flow properties. Modern approaches are presented, including particle image velocimetry and particle tracking velocimetry, applied in various experimental facilities. Students obtain first-hand experience with such techniques in laboratory sessions, using high-speed/high-resolution cameras in wind/water tunnels. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Knowledge of the working principles of modern flow imaging and velocimetry Understanding of hardware and software requirements to achieve desired spatio-temporal resolution. Ability to carry out imaging experiments in actual laboratory flows, and interpreting meaningfully the results. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Basics of optical diagnostics. Conception of laboratory flow experiment to be characterized by imaging, with focus on the spatial and temporal scales at play. Laboratory experiments including: - characterization of vortex shedding by wake visualization and liquid crystal thermography. - Eulerian flow field in turbulent flow by particle image velocimetry - Lagrangian flow field in turbulent flow by particle tracking velocimetry - fluid-structure interaction in wind tunnel by high-speed imaging. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts will be made available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Fluid Dynamics, basic programming skills. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0109-00L | Turbulent Flows | W | 4 credits | 2V + 1U | P. Jenny | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Laminar and turbulent flows, instability and origin of turbulence - Statistical description: averaging, turbulent energy, dissipation, closure problem - Scalings. Homogeneous isotropic turbulence, correlations, Fourier representation, energy spectrum - Free turbulence: wake, jet, mixing layer - Wall turbulence: Channel and boundary layer - Computation and modelling of turbulent flows | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Basic physical phenomena of turbulent flows, quantitative and statistical description, basic and averaged equations, principles of turbulent flow computation and elements of turbulence modelling | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | - Properties of laminar, transitional and turbulent flows. - Origin and control of turbulence. Instability and transition. - Statistical description, averaging, equations for mean and fluctuating quantities, closure problem. - Scalings, homogeneous isotropic turbulence, energy spectrum. - Turbulent free shear flows. Jet, wake, mixing layer. - Wall-bounded turbulent flows. - Turbulent flow computation and modeling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes are available | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | S.B. Pope, Turbulent Flows, Cambridge University Press, 2000 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0125-00L | Hydrodynamics and Cavitation | W | 4 credits | 3G | O. Supponen | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course builds on the foundations of fluid dynamics to describe hydrodynamic flows and provides an introduction to cavitation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The main learning objectives of this course are: 1. Identify and describe dominant effects in liquid fluid flows through physical modelling. 2. Identify and predict the onset of hydrodynamic instabilities. 3. Describe acoustic wave behaviour in liquids. 4. Explain tension, nucleation and phase-change in liquids. 5. Predict the behaviour of a gas bubble subject to changes in surrounding liquid pressure. 6. Describe hydrodynamic cavitation and its consequences in physical terms. 7. Recognise experimental techniques and industrial and medical applications for cavitation. 8. Read and evaluate research papers on recent research on cavitation and bubble dynamics and communicate the content orally to a multidisciplinary audience. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course gives an overview on the following topics: basics of hydrodynamics, capillarity, hydrodynamic instabilities, liquid fragmentation. Acoustics in liquids, tension in liquids, phase change. Cavitation and bubble dynamics: single bubbles (nucleation, dynamics, collapse), bubble clouds and cavitating flows. Industrial applications and measurement techniques. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Class notes and handouts | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literature will be provided in the course material. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Fluid dynamics I & II or equivalent | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0163-00L | Nuclear Energy Conversion | W | 4 credits | 2V + 1U | A. Manera | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Phyisical fundamentals of the fission reaction and the sustainable chain reaction, thermal design, construction, function and operation of nuclear reactors and power plants, light water reactors and other reactor types, conversion and breeding | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students get an overview on energy conversion in nuclear power plants, on construction and function of the most important types of nuclear reactors with special emphasis to light water reactors. They obtain the mathematical/physical basis for quantitative assessments concerning most relevant aspects of design, dynamic behaviour as well as material and energy flows. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Nuclear physics of fission and chain reaction. Themodynamics of nuclear reactors. Design of the rector core. Introduction into the dynamic behaviour of nuclear reactors. Overview on types of nuclear reactors, difference between thermal reactors and fast breaders. Construction and operation of nuclear power plants with pressurized and boiling water reactors, role and function of the most important safety systems, special features of the energy conversion. Development tendencies of rector technology. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Hand-outs will be distributed. Additional literature and information on the course moodle website | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | S. Glasston & A. Sesonke: Nuclear Reactor Engineering, Reactor System Engineering, Ed. 4, Vol. 2., Springer-Science+Business Media, B.V. R. L. Murray: Nuclear Energy (Sixth Edition), An Introduction to the Concepts, Systems, and Applications of Nuclear Processes, Elsevier | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0204-00L | Aerospace Propulsion | W | 4 credits | 2V + 1U | R. S. Abhari, V. Iranidokht | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | An introduction of working principals and design of airbreathing engines as well as rocket propulsion are presented. Key elements of the propulsion system as well as the design choices for the engineering of various components are examined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction of working principals and design of aircraft engines and the related background in aero- and thermodynamics. Engineering aspects of the component designs are examined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course focuses on the fundamental concepts as well as the applied technologies for aerospace application, with a primary focus related to aviation. The systematic evolution of the aircraft propulsion engines, from turbojet to the modern high bypass ratio turbofan, including the operational limitations, are examined. Following the system analysis, the aero/thermo design of each component, including the inlet, fan, compressor, combustors, turbines and exhaust nozzles are presented. The mechanical and material limitations, as well as design choices related to manufacturing and operability of engines are also presented. The environmental aspects of propulsion (noise and emissions) are also presented. In the last part of the course, a basic introduction to the fundamentals of space propulsion is also presented. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes will be distributed. There will be NO recording of the lectures, nor the exercise sessions. Physical attendance in this course is advised. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Aircraft Engines and Gas Turbines, second edition By Jack L. Kerrebrock | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | This course requires prior background in mechanical or aerospace engineering. Students must have already completed courses in basics of Thermodynamics (including cycles) as well as compressible Fluid Dynamics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0209-00L | Renewable Energy Technologies | W | 4 credits | 3G | A. Bardow, E. Casati | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course covers the key concepts and aspects involved in: (i) the economics of renewable energy and its integration in the energy system, (ii) the engineering of prominent renewable energy technologies (solar, wind, hydro, geothermal and bioenergy), and (iii) energy storage, renewable transport and renewable heating & cooling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Students learn the potential and limitations of renewable energy technologies and their contribution towards sustainable energy utilization. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture Notes containing copies of the presented slides. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisite: strong background on the fundamentals of engineering thermodynamics, equivalent to the material taught in the courses Thermodynamics I, II, and III of D-MAVT. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0213-00L | Fluid Dynamics with the Lattice Boltzmann Method | W | 4 credits | 3G | I. Karlin | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The course provides an introduction to theoretical foundations and practical usage of the Lattice Boltzmann Method for fluid dynamics simulations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Methods like molecular dynamics, DSMC, lattice Boltzmann etc are being increasingly used by engineers all over and these methods require knowledge of kinetic theory and statistical mechanics which are traditionally not taught at engineering departments. The goal of this course is to give an introduction to ideas of kinetic theory and non-equilibrium thermodynamics with a focus on developing simulation algorithms and their realizations. During the course, students will be able to develop a lattice Boltzmann code on their own. Practical issues about implementation and performance on parallel machines will be demonstrated hands on. Central element of the course is the completion of a lattice Boltzmann code (using the framework specifically designed for this course). The course will also include a review of topics of current interest in various fields of fluid dynamics, such as multiphase flows, reactive flows, microflows among others. Optionally, we offer an opportunity to complete a project of student's choice as an alternative to the oral exam. Samples of projects completed by previous students will be made available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course builds upon three parts: I Elementary kinetic theory and lattice Boltzmann simulations introduced on simple examples. II Theoretical basis of statistical mechanics and kinetic equations. III Lattice Boltzmann method for real-world applications. The content of the course includes: 1. Background: Elements of statistical mechanics and kinetic theory: Particle's distribution function, Liouville equation, entropy, ensembles; Kinetic theory: Boltzmann equation for rarefied gas, H-theorem, hydrodynamic limit and derivation of Navier-Stokes equations, Chapman-Enskog method, Grad method, boundary conditions; mean-field interactions, Vlasov equation; Kinetic models: BGK model, generalized BGK model for mixtures, chemical reactions and other fluids. 2. Basics of the Lattice Boltzmann Method and Simulations: Minimal kinetic models: lattice Boltzmann method for single-component fluid, discretization of velocity space, time-space discretization, boundary conditions, forcing, thermal models, mixtures. 3. Hands on: Development of the basic lattice Boltzmann code and its validation on standard benchmarks (Taylor-Green vortex, lid-driven cavity flow etc). 4. Practical issues of LBM for fluid dynamics simulations: Lattice Boltzmann simulations of turbulent flows; numerical stability and accuracy. 5. Microflow: Rarefaction effects in moderately dilute gases; Boundary conditions, exact solutions to Couette and Poiseuille flows; micro-channel simulations. 6. Advanced lattice Boltzmann methods: Entropic lattice Boltzmann scheme, subgrid simulations at high Reynolds numbers; Boundary conditions for complex geometries. 7. Introduction to LB models beyond hydrodynamics: Relativistic fluid dynamics; flows with phase transitions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes on the theoretical parts of the course will be made available. Selected original and review papers are provided for some of the lectures on advanced topics. Handouts and basic code framework for implementation of the lattice Boltzmann models will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The course addresses mainly graduate students (MSc/Ph D) but BSc students can also attend. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0215-00L | Fundamentals of Acoustics Number of participants limited to 40. | W | 4 credits | 3G | N. Noiray, B. Van Damme | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course provides an introduction to acoustics. It focusses on fundamental phenomena of airborne and structure-borne sound waves. The lecture combines theoretical principles with practical insights and interpretations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course is proposed for Master and PhD students interested in getting knowledge in acoustics. Students will be able to understand, describe analytically and interpret sound generation, absorption and propagation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | First, magnitudes characterizing sound propagation are reviewed and the constitutive equations for acoustics are derived. Then the different types of sources (monopole/dipole/quadrupole, punctual, non-compact) are introduced and linked to the noise generated by turbulent flows, coherent vortical structures or fluctuating heat release. The scattering of sound by rigid bodies is given in basic configurations. Analytical, experimental and numerical methods used to analyze sound in ducts and rooms are presented (Green functions, Galerkin expansions, Helmholtz solvers). The second part covers elastic wave phenomena, such as dispersion and vibration modes, in infinite and finite structures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Handouts will be distributed during the class | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Books will be recommended for each chapter | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0216-00L | Wind Energy | W | 4 credits | 2V + 1U | N. Chokani | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy. These subjects are introduced through a discussion of the basic principles of wind energy generation and conversion, and a detailed description of the broad range of relevant technical, economic and environmental topics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The objective of this course is to introduce the students to the fundamentals, technologies, modern day application, and economics of wind energy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This mechanical engineering course focuses on the technical aspects of wind turbines; non-technical issues are not within the scope of this technically oriented course. On completion of this course, the student shall be able to conduct the preliminary aerodynamic and structural design of the wind turbine blades. The student shall also be more aware of the broad context of drivetrains, dynamics and control, electrical systems, and meteorology, relevant to all types of wind turbines. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0221-00L | Introduction to Modeling and Optimization of Sustainable Energy Systems | W | 4 credits | 4G | G. Sansavini, A. Bardow, S. Moret | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course introduces the fundamentals of energy system modeling for the analysis and the optimization of the energy system design and operations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | At the end of this course, students will be able to: - define and quantify the key performance indicators of sustainable energy systems; - select and apply appropriate models for conversion, storage and transport of energy; - develop mathematical models for the analysis, design and operations of multi-energy systems and solve them with appropriate mathematical tools; - select and apply methodologies for the uncertainty analysis on energy systems models; - apply the acquired knowledge to tackle the challenges of the energy transition. In the course "Introduction to Modeling and Optimization of Sustainable Energy Systems", the competencies of process understanding, system understanding, modeling, concept development, data analysis & interpretation and measurement methods are taught, applied and examined. Programming is applied. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The global energy transition; Key performance indicators of sustainable energy systems; Optimization models; Heat integration and heat exchanger networks; Life-cycle assessment; Models for conversion, storage and transport technologies; Multi-energy systems; Design, operations and analysis of energy systems; Uncertainties in energy system modeling. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture slides and supplementary documentation will be available online. Reference to appropriate book chapters and scientific papers will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0225-00L | Material Characterization by X-ray Techniques: Diffraction, Absorption, Total Scattering | W | 4 credits | 3G | P. M. Abdala, D. Piankova | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The determination of structure–property relationships in functional materials relies critically on structural characterization methods. This course introduces the basics of X-ray powder diffraction, pair distribution function (PDF) of X-ray total scattering and X-ray absorption spectroscopy analyses to determine the structure of inorganic functional materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Introduction basics of the structural characterization of materials using X-rays: covering the local and average structures. specifically: X-ray , -powder diffraction -total scattering and -absorption spectroscopy. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course outlines experimental techniques based on X-rays to investigate the atomic structure of materials covering the local- mid- and long-range order. It covers: 1- Review of fundamentals of materials science and the structure of solids. 2- Overview of the different characterization methods to investigate the structure of functional materials, spanning the local to long-range order structure. 3- X-ray powder diffraction. 4- X-ray total scattering and pair distribution function analysis. 5- X-ray absorption spectroscopy. 6- Practical sessions on X-ray powder diffraction and PDF experiments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literature will be given during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0227-00L | Basics of Air Transport (Aviation I) | W | 4 credits | 3G | P. Wild | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | In general the course explains the main principles of air transport and elaborates on simple interdisciplinary topics. Working on broad 14 different topics like aerodynamics, manufacturers, airport operations, business aviation, business models etc. the students get a good overview in air transportation. The program is taught in English and we provide 11 different experts/lecturers. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The goal is to understand and explain basics, principles and contexts of the broader air transport industry. Further, we provide the tools for starting a career in the air transport industry. The knowledge may also be used for other modes of transport. Ideal foundation for Aviation II - Management of Air Transport. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Weekly: 1h independent preparation; 2h lectures and 1 h training with an expert in the respective field Concept: This course will be tought as Aviation I. A subsequent course - Aviation II - covers the "Management of Air Transport". Content: Transport as part of the overall transportation scheme; Aerodynamics; Aircraft (A/C) Designs & Structures; A/C Operations; Aviation Law; Maintenance & Manufacturers; Airport Operations & Planning; Aviation Security; ATC & Airspace; Air Freight; General Aviation; Business Jet Operations; Business models within Airline Industry; Military Aviation. Technical visit: This course includes a guided tour at Zurich Airport and Dubendorf Airfield (baggage sorting system, apron, Tower & Radar Simulator at Skyguide Dubendorf). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Preparation materials & slides are provided prior to each class | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Literature will be provided by the lecturers, respectively there will be additional Information upon registration (normally available in Moodle) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | The lecture is planned as class teaching. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0245-00L | Energy Systems Analysis: an Introduction and Overview with Applications | W | 4 credits | 2V + 2U | R. McKenna, P. Burgherr, E. Panos, R. Sacchi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introductory (advanced Bachelor or beginner Master level) course on Energy Systems Analysis, providing an overview of the field and methods. After an introduction to systems thinking and characterisation of technologies, three main blocks cover with Lifecycle Assessment (LCA, 3 units), bottom-up linear optimisation models (5 units) and Multi-Criteria Decision Analysis (MCDA, 3 units). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | - Analyse energy technologies with respect to different criteria/characteristics - Discuss and debate the pros and cons of different ESA models/approaches (for specific applications) - Explain the system-level interdependencies/interconnections within the energy system - Evaluate the effect of uncertainties and “the human dimension” on ESA and scenarios | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course provides an introduction and overview to the most well-established models and methods of energy systems analysis, in each case introducing students to the theory and assumptions of the method, strengths and weaknesses of the specific approach, and case studies for exemplary energy technologies and systems. The students are taught to understand and will be able to apply the basic principles of these methods in the context of targeted assignments relating to real-world energy systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | No but slides are provided before the lectures and videos recorded. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Will be provided during the course. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | No specific prerequisities, some background in energy-related topics in the Bachelor would be beneficial. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0251-00L | Principles, Efficiency Optimization and Future Applications of IC Engines | W | 4 credits | 2V + 1U | Y. Wright, P. Soltic | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Future Relevance of IC engines for transportation and Power-on-Demand. Characteristic performance parameters, operating maps and duty cycles. Thermodynamic cycles and energetic optimization. In-cylinder flows, convective and radiative heat transfer, combustion modes, boosting and simulation methods. Hybrid powertrains, decentralized power/heat cogeneration and use of renewable/e-fuels. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students get familiar with operating characteristics and efficiency maximization methods of IC engines for propulsion and decentralized electricity (and heat) generation. To this end, they learn about simulation methods and related experimental techniques for performance assessment in a combination of lectures and exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This lecture aims at introducing the students to the working principles and efficiency optimization methods for Internal Combustion (IC) engines which are expected to continue to play a very important role in transportation (long-haul heavy duty, marine) and decentralized combined heat and power generation. Following an overview of different applications and powertrains, the course will focus on the following topics: First, a generic overview of the history of IC-Engines is given, and the basic dimensions and specific engine-relevant terminology are introduced. Next, operating maps for different duty cycles are discussed, highlighting the benefits of individual powertrain configurations for different usage scenarios. The high-pressure thermodynamic process and combustion-induced heat release are analyzed in detail and the design of the combustion processes is discussed in view of further optimization of the energy conversion efficiency. The concept of boosting, its challenges and potential are also presented. In addition, flow field characteristics, convective and radiative heat transfer and combustion modes (Otto, Diesel and “multi-mode” cycles) will be discussed along with possible simulation methods. The course consists of lectures combined with exercises. In addition, several invited guest talks will be held by representatives from Swiss industrial companies active in this field. Provided the pandemic measures allow, visits to different engine test facilities are further envisioned. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | J. Heywood, Internal Combustion Engine Fundamentals, McGraw-Hill | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | This course provides background for the course 151-0254-00L “Environmental Aspects of Future Mobility” held in the Spring Semester, where the focus is on emission formation and minimization, exhaust gas after treatment systems and potentials of future synthetic/e-fuels in IC engines; all given in the broader context of a future mobility/transportation options (battery electric, hybrids, fuel cells etc.) and transformation pathways towards sustainability. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0317-00L | Visualization, Simulation and Interaction - Virtual Reality II | W | 4 credits | 3G | A. Kunz | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This lecture provides deeper knowledge on the possible applications of virtual reality, its basic technolgy, and future research fields. The goal is to provide a strong knowledge on Virtual Reality for a possible future use in business processes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Virtual Reality can not only be used for the visualization of 3D objects, but also offers a wide application field for small and medium enterprises (SME). This could be for instance an enabling technolgy for net-based collaboration, the transmission of images and other data, the interaction of the human user with the digital environment, or the use of augmented reality systems. The goal of the lecture is to provide a deeper knowledge of today's VR environments that are used in business processes. The technical background, the algorithms, and the applied methods are explained more in detail. Finally, future tasks of VR will be discussed and an outlook on ongoing international research is given. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction into Virtual Reality; basisc of augmented reality; interaction with digital data, tangible user interfaces (TUI); basics of simulation; compression procedures of image-, audio-, and video signals; new materials for force feedback devices; intorduction into data security; cryptography; definition of free-form surfaces; digital factory; new research fields of virtual reality | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The handout is available in German and English. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: "Visualization, Simulation and Interaction - Virtual Reality I" is recommended, but not mandatory. Didactical concept: The course consists of lectures and exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0323-00L | Hands-on Self-Driving Cars with Duckietown Number of participants limited to 30. Note: The previous course title until HS20 "Autonomous Mobility on Demand: From Car to Fleet". | W | 4 credits | 4G | M. Di Cicco | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course is a hands-on introduction to self-driving cars using the Duckietown platform. Each student is given a mobile wheeled robot and throughout the class must configure and program. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | This course covers the basics of modeling, perception, planning, control, and learning for autonomous systems. The focus is on learning the foundational elements of a robotics platform and understanding how these components integrate and interact. The objective of the class is to provide students with a practical understanding of what it takes to design and operate an autonomous mobile system, from a single unit up to a full fleet of robotic systems. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Perception, planning, modeling, and control, leveraging primarily on vision data. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes, primarily in the form of slides and tutorials, will be accessible from Moodle. Additional materials can also be accessed from the EdX MOOC called "Self-driving cars with Duckietown". | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Course notes will be provided in an electronic form. These are some books that can be used to provide background information or consulted as references: (1) Siegwart, Nourbakhsh, Scaramuzza - Introduction to autonomous mobile robots; (2) Norvig, Russell - Artificial Intelligence, a modern approach. (3) Peter Corke - Robotics Vision and Control (4) Oussama Khatib, Bruno Siciliano - Handbook of Robotics | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Students should have taken a basic course in probability theory, computer vision, and control systems. It is crucial that they are not only familiar but also comfortable with programming (Python), Linux, GIT utilization, and the Robot Operating System (ROS), as these tools will be fundamental throughout the course. A shared space will be available to work with the robots. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0325-00L | Planning and Decision Making for Autonomous Robots | W | 4 credits | 2V + 1U | E. Frazzoli | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Planning safe and efficient motions for robots in complex environments, often shared with humans and other robots, is a difficult problem combining discrete and continuous mathematics, as well as probabilistic, game-theoretic, and ethical/regulatory aspects. This course will cover the algorithmic foundations of motion planning, with an eye to real-world implementation issues. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students will learn how to design and implement state-of-the-art algorithms for planning the motion of robots executing challenging tasks in complex environments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Discrete planning, shortest path problems. Planning under uncertainty. Game-theoretic planning. Geometric Representations. Steering methods. Configuration space and collision checking. Potential and Navigation functions. Grids, lattices, visibility graphs. Mathematical Programming. Sampling-based methods. Planning with limited information. Multi-agent Planning. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Course notes and other education material will be provided for free in an electronic form. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | There is no required textbook, but an excellent reference is Steve Lavalle's book on "Planning Algorithms." | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Students should have taken basic courses in optimization, control systems, probability theory, and should be familiar with modern programming languages and practices (e.g., Python, and/or C/C++). Previous exposure to robotic systems is a definite advantage. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0353-00L | Mechanics of Composite Materials | W | 4 credits | 2V + 1U | G. Pappas | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | The courses treats aspects related to elastic behavior of unidirectional and multidirectional laminates, micromechanics, failure and damage analysis, analysis and design of composite structures. The focus is on laminated fiber-reinforced polymer composites. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The objective is to introduce the basic concept of composite materials and provide a thorough understanding of the mechanical response of such materials and structures particularly made from fiber reinforced polymer composites, including elastic behavior, failure, fracture and damage analysis as well as structural design aspects. The ultimate goal is to provide the necessary skills to address the design and analysis of modern lightweight composite structures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | The course is addressing following topics: - Introduction - Elastic anisotropy - Micromechanics & Homogenization - Classical Laminate Theory (CLT) - Strength, failure and damage analysis - Thin ply composite shells & effects of material non-linearity - Analysis and design of composite structures | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Script, handouts, exercises and additional material are available in PDF-format on the moodle page of the lecture. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | The lecture material is covered by a script/lecture notes compiled by CMASLab and further literature is referenced therein. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0368-00L | Aeroelasticity | W | 4 credits | 2V + 1U | M. Righi | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Introduction to the basics and into the methods of Aeroelasticity. An overview of the main static and dynamic phenomena arising from the interaction between structural and aerodynamic loads. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The course will provide a basic physical understanding of flow-structure interaction focused on lifting bodies such as wings. You will get to know the most important phenomena in the static and dynamic aeroelasticity, as well as a presentation of the most relevant analytical and numerical prediction methods. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Introduction to steady and unsteady thin airfoil theory, extension to three dimension wing aerodynamics, strip theory, overview of numerical methods available (panel methods, CFD). Introduction to unsteady aerodynamics (theory): Theodorsen and Wagner functions. Unsteady aerodynamics observed from numerical experiments (CFD). Generation of simplified mathematical models. Presentation of steady aeroelasticity: equations of equilibrium for the typical section, aeroelastic deformation, effectiveness of the aeroelastic system, stability (definition), divergence condition, role played by a control surface, control effectiveness, sweep angle, aeroelastic tailoring of bending-torsion coupling. Ritz model to model beams, use of FEM, modal condensation, choice of generalized coordinates. Presentation of dynamic aeroelasticity: assessment of dynamic aeroelastic response of simple systems. Flutter kinematics (bending-twisting). Dynamic response of a simplified wing. Numerical aeroelasticity (Test Cases extracted from the latest AIAA Aeroelastic Prediction Workshops). Generation of Reduced Order Models from CFD data (in some cases though Machine Learning). Aeroelasticity of modern aircraft: assessment of the effects induced by the control surfaces and control systems (Aeroservoelasticity), active controlled aircraft, flutter-suppression systems, certification (EASA, FAA). Planning and execution of Wind Tunnel experiments with aeroelastic models. Live-execution of an experiment in the WT of the ETH. Brief presentation of phenomena like Limit-Cycle Oscillations (LCO) and panel flutter. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | A script in English language is available. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Bispilnghoff Ashley, Aeroelasticity Abbott, Theory of Wing sections, Y. C. Fung, An Introduction to the Theory of Aeroelasticity, Dover Phoenix Editions. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0371-00L | Advanced Model Predictive Control Number of participants limited to 60. | W | 4 credits | 2V + 1U | M. Zeilinger, A. Carron, L. Hewing, J. Köhler | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Model predictive control (MPC) has established itself as a powerful control technique for complex systems under state and input constraints. This course discusses the theory and application of recent advanced MPC concepts, focusing on system uncertainties and safety, as well as data-driven formulations and learning-based control. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Design, implement and analyze advanced MPC formulations for robust and stochastic uncertainty descriptions, in particular with data-driven formulations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Topics include - Nominal MPC for uncertain systems (nominal robustness) - Robust MPC - Stochastic MPC - Review of regression methods - Set-membership Identification and robust data-driven MPC - Bayesian regression and stochastic data-driven MPC - MPC as safety filter for reinforcement learning | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture notes will be provided. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic courses in control, advanced course in optimal control, basic MPC course (e.g. 151-0660-00L Model Predictive Control in Spring Semester) strongly recommended. Background in linear algebra and stochastic systems recommended. |
- Page 1 of 5 All