Search result: Catalogue data in Autumn Semester 2024

High-Energy Physics (Joint Master with IP Paris) Information
Electives
Optional Subjects in Mathematics
NumberTitleTypeECTSHoursLecturers
401-3531-00LDifferential Geometry I Information
At most one of the three course units (Bachelor Core Courses)
401-3461-00L Functional Analysis I
401-3531-00L Differential Geometry I
401-3601-00L Probability Theory
can be recognised for the Master's degree in Mathematics or Applied Mathematics. In this case, you cannot change the category assignment by yourself in myStudies but must take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.
W9 credits4V + 1UU. Lang
AbstractIntroduction to differential geometry and differential topology. Contents: Curves, (hyper-)surfaces in R^n, geodesics, curvature, Theorema Egregium, Theorem of Gauss-Bonnet. Hyperbolic space. Differentiable manifolds, immersions and embeddings, Sard's Theorem, mapping degree and intersection number, vector bundles, vector fields and flows, differential forms, Stokes' Theorem.
Learning objectiveLearn the basic concepts and results in differential geometry and differential topology. Learn to describe, compute, and solve problems in the language of differential geometry.
ContentCurves, (hyper-)surfaces in R^n, first and second fundamental forms, geodesics, curvature, Theorema Egregium, Theorem of Gauss-Bonnet, minimal surfaces. Hyperbolic space. Differentiable manifolds, immersions and embeddings, Sard's Theorem, mapping degree and intersection number, vector bundles, vector fields and flows, differential forms, Stokes' Theorem.
Lecture notesPartial lecture notes are available from https://people.math.ethz.ch/~lang/
LiteratureDifferential geometry in R^n:
- Manfredo P. do Carmo: Differential Geometry of Curves and Surfaces
- S. Montiel, A. Ros: Curves and Surfaces
- Wolfgang Kühnel: Differentialgeometrie. Kurven-Flächen-Mannigfaltigkeiten
- Christian Bär: Elementare Differentialgeometrie
Differential topology:
- Dennis Barden & Charles Thomas: An Introduction to Differential Manifolds
- Victor Guillemin & Alan Pollack: Differential Topology
- Morris W. Hirsch: Differential Topology
- John M. Lee: Introduction to Smooth Manifolds
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Social CompetenciesSensitivity to Diversityassessed
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed
401-3461-00LFunctional Analysis I Information
At most one of the three course units (Bachelor Core Courses)
401-3461-00L Functional Analysis I
401-3531-00L Differential Geometry I
401-3601-00L Probability Theory
can be recognised for the Master's degree in Mathematics or Applied Mathematics. In this case, you cannot change the category assignment by yourself in myStudies but must take contact with the Study Administration Office (www.math.ethz.ch/studiensekretariat) after having received the credits.
W9 credits4V + 1UM. Burger
AbstractBaire category; Banach and Hilbert spaces, bounded linear operators; basic principles: Uniform boundedness, open mapping/closed graph theorem, Hahn-Banach; convexity; dual spaces; weak and weak* topologies; Banach-Alaoglu; reflexive spaces; compact operators and Fredholm theory; closed graph theorem; spectral theory of self-adjoint operators in Hilbert spaces. Basics of
Sobolev spaces.
Learning objectiveAcquire a good degree of fluency with the fundamental concepts and tools belonging to the realm of linear Functional Analysis, with special emphasis on the geometric structure of Banach and Hilbert spaces, and on the basic properties of linear maps.
LiteratureRecommended references include the following:

Michael Struwe: "Funktionalanalysis I" (Skript available at https://people.math.ethz.ch/~struwe/Skripten/FA-I-2019.pdf)

Haim Brezis: "Functional analysis, Sobolev spaces and partial differential equations". Springer, 2011.

Peter D. Lax: "Functional analysis". Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York, 2002.

Elias M. Stein and Rami Shakarchi: "Functional analysis" (volume 4 of Princeton Lectures in Analysis). Princeton University Press, Princeton, NJ, 2011.

Manfred Einsiedler and Thomas Ward: "Functional Analysis, Spectral Theory, and Applications", Graduate Text in Mathematics 276. Springer, 2017.

Walter Rudin: "Functional analysis". International Series in Pure and Applied Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.
Prerequisites / NoticeSolid background on the content of all Mathematics courses of the first two years of the undergraduate curriculum at ETH.Most importantly: fluency with point set topology and measure theory, in part. Lebesgue integration and L^p spaces.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Problem-solvingassessed
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed
  •  Page  1  of  1